藻类问题

  • 雨生红球藻什么情况会变白

    雨生红球藻什么情况会变白

    室外反应器的雨生红球藻红细胞漂白很多时候出现在夜间,基本都是个别细胞白了不会全白,这种完整的透明细胞形态可以维持10天以上,光太强,光氧化,类胡萝卜素分解了还可以理解,最奇怪的是叶绿素也漂白没了

    1、强光诱导下,不补充二氧化碳会变白的;

    2、晚上光合作用停止,温度的突然变化也会造成细胞漂白;

    3、pH变化也会使得细胞变白;

    4、盐诱导过程,浓度不均匀也会造成细胞变白

  • 比较环保的杀菌杀藻产品有哪些?

    比较环保的杀菌杀藻产品有哪些?

    研究了碘伏和异噻唑啉酮除藻剂对球形棕囊藻赤潮生物的灭杀和控制作用.结果表明,单独使用时,碘伏的最低 有效浓度为30mg*L-1,异噻唑啉酮最低有效浓度为0.30mg*L-1.当两者复配时有协同作用,可提高它们的杀藻能力.碘伏与异噻唑啉酮浓度比为 1.0∶0.15时除藻效果最佳.

    还有木醋液配合苦楝素、印楝素、苦栋素、苦豆碱、赖素、烟碱、苍耳水杀藻效果也很好而且环保。

    还有常见的辣椒素用量很少效果极佳。

  • 培养卵囊藻,如何正确使用磷肥?

    培养卵囊藻,如何正确使用磷肥?

    培养卵囊藻使用磷肥注意,如果使用磷肥品质不好,就会导致藻类生长慢。培养卵囊藻尿素和磷酸氢二钾比例是10:1。如果使用过磷酸钙,因溶解度差,磷含量低,用量要增加2到3倍,也就是尿素和过磷酸钙比例为10:2-3。

    注意磷肥质量。

    磷酸氢二钾假的多,特别是小塑料袋包装,大多是假货。过磷酸钙要使用白色粉沫,能用于水的产品。使用大厂家的产品。

  • 小球藻和球等鞭金藻如何浓缩,浓缩液怎么保存效果好?

    小球藻和球等鞭金藻如何浓缩,浓缩液怎么保存效果好?

    1、小球藻的浓缩以(80±5)mg·kg-1的明矾液及4%的石灰水效果最好;球等鞭金藻的浓缩以(100±10)mg·kg-1的明矾液及6%的石灰水效果最好。

    保存方法以加入保护剂甘油并置于-30℃冰箱中效果最好,小球藻和球等鞭金藻的存活率分别为95%和93%。低温保存前后,藻的高度不饱和脂肪酸(HUFA)的含量变化不明显,用浓缩液投喂中国对虾和轮虫的效果与普通藻无显著差异。

    2、项文钰等将小球藻和蛋白核小球藻都分别加入10%、20%、30%的DMSO,以及20%、35%和50%的甘油,保存在-20℃、-75℃和-196℃的液氮中,再各取一些不加任何防冻剂保存在20℃的培养箱里。3个月后取出培养,观察颜色变化并测量其中的叶绿素含量,结果表明:浓缩的藻液可以在20℃下长期保存;小球藻浓缩藻液添加20%的甘油在各种不同的温度下保存效果都很好,其次是10%的DMSO;而衣藻则加入10%的DMSO在各种温度下保存都较好,加入20%的甘油,在液氮中保存的效果最好。浓度大于10%的DMSO和大于20%的甘油对微藻细胞的保藏效果不佳。

  • 如何进行微藻基因测序鉴定?

    如何进行微藻基因测序鉴定?

    请问鉴定微藻是否可以通过18S测序鉴定,有无通用的引物?

    微藻分子测序鉴定没有公认的条形码,一般常用的是18s,rbcL和ITS基因,分子鉴定前最好先用形态学大致鉴定一下,确定目和科,能确定属最好,然后去NCBI看看哪种分子标记数据多,然后选择该标记,一般选两种,例如常用的18S和rbcL,经营比对鉴定,但是18S和rbcL还是比较保守,只能在种水平以上适合,如果种内不同株的鉴定比较困难,18s通用引物有的,查文献可以,一般的藻类鉴定文献都有详细介绍方法。

  • TAP培养基颜色变化的原因

    TAP培养基颜色变化的原因

    TAP培养基的配置说明中关于Hutner’s trace elements中的初始配置好是绿色 静置一阵子 每天摇动促进溶解 颜色变紫色 曝气 过滤之后 紫红褐色 只要静置不产生沉淀 都可以用,如果配置的颜色变化过程和说明不同顺序或者产生沉淀则说明试剂出错。

  • 东海原甲藻和海洋原甲藻的形态区别

    东海原甲藻和海洋原甲藻的形态区别

    东海原甲藻是倒批针心形,海洋原甲藻是心形  顶端有刺

  • 如何保持藻类培养过程培养液pH的稳定

    如何保持藻类培养过程培养液pH的稳定

    一般培养过程中藻类的生长会导致pH升高,为了长期培养我们需要在培养液配方里面加入一些缓冲剂来保证pH的稳定。一般的培养基配方都是经过优化的,如果选择包含tris成分的培养基,培养过程pH变化比一般不加tris的要稳定很多。比如TAP、ESM、K-medium等等。

    注:tris=三羟甲基氨基甲烷

  • 养殖水体如何控制蓝藻?

    养殖水体如何控制蓝藻?

    蓝藻爆发对养殖水体的破坏是非常巨大,蓝藻分泌的毒素会导致全部养殖品种死亡,损失巨大,到了蓝藻泛滥的后期再去用药都是得不偿失的,而且所谓的药物治理蓝藻成功都是概率性事件。

    前期的控制尤为重要,我们一般分析蓝藻爆发是由于向水体投放了大量的饲料使得水体富营养化,同时高温,这个时候所有的藻类包括饵料藻以及蓝藻都迅速生长处于一个平衡状态;

    由于藻类进行光合作用迅速,使得水体中的含氧量升高,而二氧化碳含量降低,pH逐渐升高,而蓝藻相对于饵料藻更适应高pH的水体环境,这个时候蓝藻生长速度快于饵料藻;

    饵料藻生长环境收到抑制,同时被浮游动物和养殖品种作为食物消化掉,而蓝藻消化不掉,使得蓝藻占比越来越高。

    最终蓝藻死亡分泌毒素造成严重的经济损失。

    前期的控制要按照如下步骤:

    1、饲料投放严格按照少量多次的原则 ,避免水体富营养化。

    2、在藻类旺盛生长的时候也要往水体爆气,增加水体二氧化碳含量或者其他增加水体碳源的物质。

    3、及时向水体补充饵料藻,例如小球藻等增加生物竞争,使得蓝藻无法成为优势种群。

    4、检测水体的pH变化及时采取措施

  • 微藻破壁技术有哪些

    微藻破壁技术有哪些

    目前用到的破壁技术有高压均质、超临界水处理、脉冲电场等方法

  • 蓝藻中能够提炼出杀灭蓝藻的无公害药物吗?

    蓝藻中能够提炼出杀灭蓝藻的无公害药物吗?

    蓝藻里估计不会,但是有金藻里产藻类生长抑制化合物的报道

  • 雨生红球藻被污染出现很多杂藻是什么?

    雨生红球藻被污染出现很多杂藻是什么?

    经常在一些藻库的图片里面看到一些雨生红球藻伴生的杂藻,多数都是浮球藻,Planktosphaeria sp. 类似下图.

    Planktosphaeria sp浮球藻,雨生红球藻伴生

    Planktosphaeria sp,雨生红球藻伴生

  • 培养基里面用碳酸氢铵经济还是尿素便宜?

    培养基里面用碳酸氢铵经济还是尿素便宜?

    在传统大规模培养中氮源一般是用碳酸氢铵或者尿素的,从经济角度来说,碳酸氢铵和尿素的含氮量比例是1:2.7。

    如果碳酸氢铵的价格是800元/吨,那么尿素低于2160元/吨,就是尿素划算。

  • 如何分离纯化微藻细胞

    如何分离纯化微藻细胞

    离心分离:离心分离法利用微藻的离心沉降系数不同而将其分离,一般采用1000-3000转速即可,太高转速虽能将微藻分离,但是高转速容易损伤藻细胞,不易养活,而太低的转速可没能很好的分离藻细胞。一般情况下,在使用其他分离方法之前也可以使用离心分离法将部分杂质去掉,然后再做相应的分离。在无菌操作之下重复用无菌水进行离心分离可以达到纯化作用,而达到纯化作用至少须要重复离心20次。

     

    划线分离:与传统的微生物划线分离一样,利用接种环沾取微藻悬浮液,然后在琼脂平板上划线。最后在人工气候箱中培养一段时间,一般至少须要两周的时间才能长出微藻藻落,再从单个微藻藻落中挑取微藻至于干净灭菌的含有相同成分的液体培养基进行培养。若已得纯种微藻则可以扩大培养。

     

    稀释分离:特定浓度的微藻悬浮液用培养基或者灭菌的蒸馏水进行不断的稀释,直到每一滴液滴中只有一个微藻时即停止。稀释好的微藻悬浮液可以滴在干净的载璃片上,置于显微镜下观察,若视野中即每一滴悬浮液只有一个藻细胞则将其移入事先准备好的培养液中培养,也可以将稀释好的微藻悬浮液直接按照每孔一滴加入到96孔板中培养,然后挑取只有单个微藻繁殖(同一微孔内只有一种微藻)而来的微孔进行扩大培养。

     微吸管分离法:微吸管分离法或许是获得单细胞藻类最常用并且最实用的方法了,该方法适用于藻细胞较大的藻类,但微吸管法对试验仪器的要求也相对较高。实验前须将微吸管或者微璃璃点样管在酒精灯火焰处将微观烧软,然后迅速将微管移离火焰并迅速将其拉长,用医学钳子在合适孔径处将其均匀钳断,获得圆滑的微吸管口,并且微吸管口的孔径至少要比所吸取的藻细胞大两倍以上,在吸取藻细胞时须要缓慢,由于流体切变力,过快的吸取速度会导致藻细胞损伤,微吸管口也不可太大,太大就难以吸取单个的目的微藻细胞。毛细管制好之后,将其与2μl、5μl、10μl或者100μl的枪头连接,最后与移液枪连接即可。在使用微吸管分离的时候,使用普通的光学显微镜即可,由于其载物台较低,因此其操作也比较方便,特别是对于新手所遇到的手抖问题。在用微吸管法分离法吸取细胞时,往往须要进行多次分离,自于毛细管作用,须要先将毛细管管头至于灭菌的蒸馏水中,将毛细管浸湿以减少毛细管作用,然后利用已浸湿毛细管在样液中吸取单个微藻细胞,若吸取不止一个微藻细胞,则将吸取液吹打到灭菌干净的蒸馏水中再次重复操作,重复多次就可以得到单个的纯藻细胞。

    96孔板法:96孔板在微藻快速分离筛选方面起到重要作用。目前常用的方法是将待分离的水样进行稀释,直到每滴大概含有一个微藻细胞为止,然后将稀释好的藻液按照每孔一滴加入到含有分离培养基的96孔板中,每孔大概250μl,培养基可以是液体的也可以是固体。置于预先设置好培养条件的人工培养箱中富集培养。如此,在一定的天数之后,某些96孔中所长出来的微藻就有可能是纯种微藻。

  • 卵囊藻怎么培养

    卵囊藻怎么培养

    卵囊藻一般都是淡水种,可以在驯化后在低盐度海水中使用,千分之十五以下。但是扩种培养需要在淡水进行,一般采用bg11或者se培养基培养,温度在18-25摄氏度,光照周期14:10或者12:12,光照强度3000-6000lux。

  • 一般加速微藻生长的氮源采用哪些成分?

    一般加速微藻生长的氮源采用哪些成分?

    在实验室和发酵工业生产中,我们常常以铵盐、硝酸盐、牛肉膏、蛋白胨、酵母膏、鱼粉、血粉、蝉蛹粉、豆饼粉、花生饼粉作为微生物的氮源。不同的微藻对于有机氮源的代谢机制也不同,所以一般实验都是要先做平行实验看看到底需要哪种有机氮源。如果觉得平行实验分析周期太长,索性 就按照NPM配方加入里面的氮源组分也可培养起来。

  • 雨生红球藻培养液选择

    雨生红球藻培养液选择

    雨生红球藻的培养液有很多种,用的比较多的有bg11培养基bbm培养基HGZ培养基SM培养基。在实际使用过程中,由于雨生红球藻生长阶段对pH的敏感性,因此培养液对于pH变化应该有一定的缓存稳定性。目前在大量实验的基础上,BBM培养液相对其他培养液来说更加稳定,因此上海光语生物科技有限公司向客户推荐使用bbm培养液配方作为雨生红球藻藻种扩培和生长的推荐培养液。

    同时我们公司推出在bbm基础上优化的cbbm培养液商品装。

  • 雨生红球藻异养的碳源是什么?

    雨生红球藻异养的碳源是什么?

    一般小球藻异养发酵采用的是葡萄糖作为碳源,雨生红球藻(haematococcus pluvialis)缺少利用葡萄糖的机制,一般是采用乙酸钠(醋酸钠,sodium acetate)作为碳源

  • 为什么培养初期不能给藻类提供24小时持续强光照

    为什么培养初期不能给藻类提供24小时持续强光照

    在藻类培养初期,一般要求客户使用14:10或者12:12的光照周期,或者是20:4的光照周期而不提倡24小时的持续光照,这里面的原因是什么呢?

    根据我们在刚接种的时候微藻浓度较低的情况下,强光照持续实验的结果,光照顶多能增加微藻淀粉、多糖等物质的含量,如果你要想获得活性物质的话,类似毒素、不饱和脂肪酸等反而会减小,而且藻种会退化,过早进入生长衰退期,称为光中毒现象。

    如果在生物反应器里面进行培养,后期藻液浓度高到一定程度的时候,我们还是建议客户采用24小时持续光照的。

    上海光语生物科技有限公司的60L光生物反应器,可以根据设定的光照亮度值,自动调节led的光强,led的光强会根据藻液变浓而变强!

  • 池塘藻类培养需要不断追肥吗?

    池塘藻类培养需要不断追肥吗?

    在养殖过程中,养殖者忽视了藻类营养的来源,普遍认为中后期投饵量和排泄物的增加,可为藻类生长提供源源不断的营养。其实不然,残饵和排泄物中的营养成分大多要通过生物转化才能被藻类吸收,且可供藻类吸收利用的部分相当有限。因此,中后期适时追肥培藻很有必要。

  • 藻细胞如何破壁?

    藻细胞如何破壁?

    在提取藻细胞物质的实验之前,不可获取的需要进行藻细胞破壁处理!

    比较好的破壁的方法包含液氮研磨、甲醇超声搅拌提取-氯仿萃取、酸溶液冻融。

     

    酸溶液冻融指的是用冻结-解冻过程中在细胞内部的冰晶体对细胞壁的机械作用而使其破裂的一种物理方法,可以加入不同的冻融介质以达到最佳破壁效果,有文献指出可以采用0.0025 mol/L的PBS缓冲液作为冻融介质。
  • 莱茵衣藻cc3960培养注意事项

    莱茵衣藻cc3960培养注意事项

    cc3960是莱茵衣藻的突变体,在培养的时候除了添加6mmol/L铜离子之外还需要添加精氨酸(Arg)才能成活

  • 浓缩小球藻藻液如何使用

    浓缩小球藻藻液如何使用

    市面上很多浓缩小球藻藻液是通过离心的方法获得的,离心对细胞结构会产生很大的破坏,所以显微镜下面看到的小球藻细胞是破碎的不完整的。自然培养的还带有蓝藻,细菌,水体病害病毒等,浓缩后这些致病致死因素浓度更高,极大威胁健康水体的养殖品种。

    上海光语生物科技有限公司的浓缩小球藻藻液是通过异养获得的不经过离心就能达到非常高的每毫升100亿完整小球藻细胞个体,使用过程可以按照1:100稀释,每1吨的藻水添加1公斤复合肥。曝气培养,然后再投放到水体里面。

    我们保证不含有害病毒、细菌、蓝藻等对养殖品种有威胁的微生物和抗生素产品,致力于为养殖户建立无抗生素的养殖环境而努力。

  • 密码保护:关于底栖硅藻培养

    密码保护:关于底栖硅藻培养

    这是一篇受密码保护的文章,您需要提供访问密码:

  • 大规模培藻用什么光源?

    大规模培藻用什么光源?

     培藻用的灯一般用金卤灯, 400或者450w,照度有20000lux,一米距离处,这样才最接近阳光,飞利浦的质量比较好!

  • 如何判断小球藻浓缩液的品质?

    如何判断小球藻浓缩液的品质?

    1、小球藻的培养水体不能含有病害,否则浓缩液导致使用水体出现病害;

    2、小球藻的培养水体不能含蓝藻等杂藻细菌,这些蓝藻带到健康水体所带来的水华会毒害养殖品种,降低水体的肥料抑制健康浮游生物生长,水体生态恶化

    3、计数方式要科学,小球藻自然水体培养最高浓度就是1000万细胞每毫升,浓缩一下也就是最多10亿细胞了,而号称几百亿都是包含了细菌和病毒细胞的,这种高浓度浓缩液本身就是传播病害和蓝藻的。

    4、显微镜镜检能看到完整的小球藻细胞,看不到小球藻细胞的那些都是营养液而已,活体小球藻细胞决定了种群优势是否可以战胜其他蓝藻和病毒获得水体的营养从而抑制其他有害藻类细菌生长!另外就是细胞要完整,如果看到破碎的细胞很多就是经过离心,这种小球藻效果上大打折扣的。


    上海光语生物科技有限公司的小球藻浓缩液采用异养培养,3天发酵无菌纯培养后浓度可以在每毫升20-100亿,经过诱导后品质活性叶绿素含量极佳,是目前市面上最可靠的小球藻浓缩液产品,肥水投喂都将保证水体安全和养殖品种健康!

  • 藻类水体和通气量的关系

    藻类水体和通气量的关系

    很多客户问养了10L的藻,这个通气量如何把握呢?一般来说, 雨生红球藻,10L的溶液,进气量是30L/h,密度在每毫升100万细胞左右。

    其他藻以此类推,密度高了,通气量就多点,密度低了,通气量就少点

  • 密码保护:藻类保存需要添加哪些元素

    密码保护:藻类保存需要添加哪些元素

    这是一篇受密码保护的文章,您需要提供访问密码:

  • 分选藻的时候用什么仪器设备

    分选藻的时候用什么仪器设备

    一般在藻类筛选的时候我们采用的胶头滴管烧了拉细或者毛细管虹吸效应来提取单细胞藻类;也可以用10微升的移液枪长枪头,取一个细胞换一个枪头

  • 充气培养产生泡沫原因分析及解决办法

    充气培养产生泡沫原因分析及解决办法

    泡沫是指不溶性气体分散在液体或熔融固体中所形成的分散物系,它是许多聚在一起的小气泡。

    一般来讲,大量稳定泡沫的形成常常是因为液体中含有某种表面活性物质,比如大多数的洗衣粉、洗洁精,香皂等。表面活性剂的一端含有亲水基团,另一端含有疏水基团。通气时,液体中的表面活性剂在气体的作用下每个分子的亲水端背靠背排列,亲水端指向一边,憎水端指向另一端,从而形成一个相互相似相容引力的薄膜,即形成了泡沫。

    养金鱼的鱼缸也会因为气泵产生泡沫,这是清水气泡,不稳定,极易破碎,通常鱼缸循环水有气泡收集装置,把气泡打碎或者转移。而藻类培养过程中产生的气泡,通常会使培养液变浑浊,粘稠度增大,细胞内的营养物质充当了表面活性吸附剂的作用,形成了大量的气泡,这些细胞往往会凋亡,继而释放难闻的恶气味,培养液呈乳白色。可以说,泡沫是藻生长不良的表征,是细胞衰退走向死亡开始,应特别注意就是。

    充气培养过程中产生泡沫原因分析:

    1.通气时气泡过大过密集。气泵:选择合适的小功率气泵,连接气阀,旋转气阀调节气体进入强度。气头:选择冒小气泡的气头(bubble size< 2 mm),调节气阀,使气泡最好是一个接一个形成一小串,而不是剧烈通气,气泡造成培养基上部翻动。

    2.细胞破碎:气泡过大造成细胞破碎,形成带有颜色的气泡。我做甲藻细胞周期实验,用150L大缸培养,气泡过大,因为甲藻细胞壁较脆弱而破碎,培养液乳白色,形成白色泡沫。

    3.染菌:尤其是培养条件不是很好的地方吗,可以在气泵和气头之间可以串联一个0.22微米的滤头,对空气进行过滤,减少细菌的注入。

    4.藻类代谢物:我们在培养产油绿藻的时候发现,培养液面层会出现一层白色的膜,经检验不是菌膜,是油脂成分。

    总之,充气过程中出现泡沫,一定要注意。

    A:藻体分离,离心或者筛绢过滤收集细胞,无菌海水淋洗去除泡沫

    B:重新配制培养基

    C:抗生素处理细胞

    D:重新接种

     

    藻类培养气泡

    藻类培养气泡

    培养藻充气

    培养藻充气

    藻类培养气泡

    藻类培养气泡

     

  • 小球藻在生产上如何使用能达到最好的效果?

    小球藻在生产上如何使用能达到最好的效果?

    小球藻水产养殖生产中不光是应用于水质处理方面,也是鱼虾蟹的最天然的开口饵料。在人工养殖之前或者自然水体环境中,小球藻是首选的开口饵料。所以,我们应该在苗期之前就把小球藻培育出来作开口饵料,然后再应用到调水环节。
    小球藻如果用来调节水质,在以下几种情况是最合适的,一是水清、水瘦、水浑浊无藻种;二是水体倒藻之后急需稳定水质环境和培育优良藻种。这时候水发黑发臭,放小球藻可以快速稳定水体环境和降低鱼虾蟹的应激,从而减少发病的机率。因为小球藻放下去就能繁养,处理水里面的有害物质。三是用来与有害藻类竞争,保持优质藻种的主导地位。

  • 用农家粪或者农家化肥可以满足小球藻的生存繁殖吗?具体怎么操作?

    用农家粪或者农家化肥可以满足小球藻的生存繁殖吗?具体怎么操作?

    我们的培养基其实也有化肥的成分,但如果是农家粪或者农家化肥必须经过发酵分解成为小分子的有机肥之后才可以投入到水塘,否则在水体里藻类与其它微生物利用不了,鱼虾蟹消化也吸收不了,就会沉到池底使得水发黑发臭,影响水质。所以最好是用小球藻专用培养基或者是水产专用的肥藻膏等产品。如果是硅藻水,比较不稳定。因为硅藻死亡之后,硅藻不容易被细菌分解重新利用,硅藻肥起来的水色难以保证存活周期,但小球藻就不会存在这样的问题。

  • 小球藻生长周期有多长?在任何土质的塘都能生存繁殖吗?

    小球藻生长周期有多长?在任何土质的塘都能生存繁殖吗?

    小球藻通过不断吸收营养和光合作用,大概8~12h左右就可以生长繁殖一代,如果营养盐、天气条件、水体环节变化不大的话可以一直生存下去。只要有适合小球藻生存的营养盐、天气以及水质环境,任何土质的塘都可以生长繁殖。如果水质变化不大,塘的肥料条件比较好的话,小球藻可以存活15~20d左右。

  • 小球藻可以在干粉里面培育吗?

    小球藻可以在干粉里面培育吗?

    我们的小球藻是培育在培养液里面,而不是干粉里面。我们也有些小球藻产品是放在干粉里,但不是应用于水质调节,而是用于苗种天然、优质的开口饵料。所以,我们提供的是培养液保存的鲜活细胞。我们有技术保障小球藻的活性,不会脱水,能够在低温条件存活3~5个月。
    使用干粉的任何藻种,包括小球藻是不可能存活的。因为细胞脱水也是会导致死亡的。

  • 小球藻适宜的生活环境以及需要的营养是什么?在水体存活时间长了会不会自然死亡?小球藻浓缩液产品如何保存?

    小球藻适宜的生活环境以及需要的营养是什么?在水体存活时间长了会不会自然死亡?小球藻浓缩液产品如何保存?

    小球藻适宜在25℃~33℃的水体环境下生存,营养盐充足的情况下,小球藻在池塘里培育起来后能达到长期稳定的效果。小球藻对水质指标要求不是太高,特别喜欢氨氮和亚硝酸比较高的水体,需要的营养盐的碳肥和氮肥为主,所以只要池塘满足一定的碳、氮条件就可以保障生存。如果是水泥池,我们也有专门的小球藻培养基供应。
    小球藻在自然水体环境里存活时间比较长,因为小球藻属于植物,植物会产生种子,小球藻也一样。理论条件下,只要水体里面营养盐合适、水质及天气条件不是太差的话,小球藻可以通过自身不断的更新换代达到藻相的平衡而一直存活下去。
    小球藻浓缩液的保存条件也是低温0℃~4℃,有效期可以达到3~5个月。

  • 市场上有小球藻藻源产品放置会不会分层?销售的小球藻怎么运输?

    市场上有小球藻藻源产品放置会不会分层?销售的小球藻怎么运输?

    因为小球藻的保存条件比较苛刻,需要0℃~4℃低温保存,所以藻类销售不是很方便,但产品都是真的。产品放置后一般都会分层,小球藻会沉到底部,上层是抑制活性的培养液。
    小球藻销售需要在泡沫箱内放冰袋密封冷藏运输,保证泡沫箱里面的温度是0℃~4℃,可以进行3~5d长途运输。达到目的地之后第一时间放入冰箱继续低温保存,小球藻的品质就不会受到太大影响。

  • 怎样鉴别小球藻真假?从产品包装外型上能否区别真假藻种?

    怎样鉴别小球藻真假?从产品包装外型上能否区别真假藻种?

    小球藻首先要生存在水体中,鉴别小球藻的真假主要是看它的储存方式。如果有宣传说小球藻方便简单易用,而且不需要低温保存来抑制小球藻的活性,那么这种小球藻产品十有八九是假货。同时不能是干燥的,必须是液体保存。而且我们的小球藻浓缩液是通过专利技术高密度保存,即使是低温保存,保质期也不超过3个月。所以,市面上宣传常温条件下能保存1年并且能随时使用的小球藻产品也是假冒的。
    从产品包装外型上区分不了藻种真假。满足低温保存条件,就说明该藻种50%是真的。剩下一半的真假性就需要把藻种放到显微镜下检测来确定。

  • 小球藻有什么优势和劣势?

    小球藻有什么优势和劣势?

    暂时来说,因为许多的藻类都会倒藻,倒藻就会产生毒素,而小球藻作为一个小型绿藻,基本不会产生毒素。作为一种优势藻种,它具有几大优点:首先,溶氧充足;其次,亚硝酸盐,氨氮的指标很低;第三、pH值非常稳定;第四,生长稳定,存活周期长。目前来说,小球藻唯一的美中不足就是pH值在培育前几天会出现0.1~0.2的波动,而且要天气晴朗时使用最好。

  • 小球藻需要在0℃~4℃保存,夏天可以放在温度比较低的土窑或者深井保存吗?

    小球藻需要在0℃~4℃保存,夏天可以放在温度比较低的土窑或者深井保存吗?

    如果北方土窖的温度高于4℃,保存时间会非常短。因为高于4℃,小球藻很活跃,2~3d就会发黑发臭然后死亡。如果高于4℃,最好是在1~2d之内全部使用。

  • 海水种小球藻保存的适宜温度是多少?

    海水种小球藻保存的适宜温度是多少?

    海水小球藻的适宜生长温度其实和淡水藻种差不多,在南方适应性可能会更好一点,尤其是湛江、海南等接近热带地区的省份,常年的温度都在25℃~35℃,非常适合小球藻的生长,20℃以下低温的生长条件就不太理想。

  • 当前小球藻成品市场的相关价格及使用方法?

    当前小球藻成品市场的相关价格及使用方法?

    2012年年底开始,小球藻成品开始在市场上销售。5kg罐装的销售价格可咨询当地经销商,适用于5~8亩。
    首先,因为小球藻是一个活体的藻种,生产出来之后必须在0℃~4℃低温保存,但也不能结冰,因为结冰后小球藻细胞壁会破壁,膨胀后就会坏死,0℃~4℃度范围内可以确保小球藻的种质完好。由于是高浓缩的藻种,小球藻的保质期不长,在低温状态下能保存3个月左右。
    所以,小球藻的使用方法是先从冰箱里取出来,放入大桶,不需要加水,让其自然升温。等小球藻的浓缩液和周围气温差不多的时候,在放入桶内,倒入小球藻加水加培养基后让其曝气活化,24h左右后下塘再使用,效果非常理想。

  • “11/5 o’clock direction”是什么意思?

    “11/5 o’clock direction”是什么意思?

    很多文章描述绿藻的鞭毛时,经常出现“11/5 o’clock direction”,哪位大神知道是什么意思?
    严先生答:

    11点和5点连线的角度
  • 哪些藻会发光

    哪些藻会发光

    夜光藻(学名:Noctiluca scintillans),俗称海耀[1],也称夜光虫,为一种在海中生存的非寄生甲藻,能作生物发光。这种藻类之所以能发光,是因为其体内数以千计的球状胞器中,具有萤光素-萤光素酶,这些胞器就像微型的电源供应器,让夜光藻在感受到周遭环境的变化时发出萤光。

    夜光藻为异养有机体,它能够吞噬,会以浮游生物、硅藻、甲藻、细菌,甚至鱼卵为食,有文献指出,硅藻为夜光藻最爱的食物;它也能以光合作用生存[2]实验室条件下我们一般都是投喂扁藻。

    藻类本身并无毒性,但其吞食浮游生物之后,体内会留下大量的氨,这些氨会被藻类排泄出来至附近水域,有些特殊藻类则能将之转化为神经毒素(例如亚历山大藻),造成该水域中的生物死亡。

    夜光藻一般保存期很短就1-2个月,而且只有夏季水温高的时候才能筛选到。

    塔玛亚历山大藻是可以发光的,但是他不能像夜光藻那么亮。只有养的很好的时候才会发光!

  • 三角褐指藻和小新月菱形藻的区别

    三角褐指藻和小新月菱形藻的区别

    我们一般是这样区分的 一是细胞大小;二是细胞形态 三角藻一般各种形态都会有 新月一般只有一种形态 ;再就是电镜和分子鉴定了
    目前在这两种藻的分子鉴定研究领域内,中国海洋大学比较有经验
  • 硅藻生活习性方面的知识

    硅藻生活习性方面的知识

    源自http://tolweb.org/Diatoms/21810

    http://earthobservatory.nasa.gov/Features/Phytoplankton/

    Introduction

    The diatoms are one of the largest and ecologically most significant groups of organisms on Earth. They are also one of the easiest to recognize, because of their unique cell structure, silicified cell wall and life cycle. They occur almost everywhere that is adequately lit (because most species need light for photosynthesis) and wet – in oceans, lakes and rivers; marshes, fens and bogs; damp moss and rock faces; even on the feathers of some diving birds. Some have been captured by other organisms and live as endosymbionts, e.g. in dinoflagellates and foraminifera. Because of their abundance in marine plankton, especially in nutrient-rich areas of the world’s oceans, diatoms probably account for as much as 20% of global photosynthetic fixation of carbon (~ 20 Pg carbon fixed per year: Mann 1999), which is more than all the world’s tropical rainforests.

    hydrosera.250aHydrosera. © David G. Mann. This image comes from the Professor Frank Round Image Archive at the Royal Botanic Garden Edinburgh

    Diatom cells have regular geometrical shapes. In a mathematical sense, they are always ‘closed generalized cylinders’ and they are usually straight (‘right’) but the cross section of the cylinder can vary from circular to elliptical to spicular to complex lobed shapes like the Hydrosera cell shown above. The shape is maintained faithfully, whatever the environmental conditions, because the cell wall contains a large proportion of hard, brittle silica, which is partially hydrated [(SiO2)m.nH2O] and non-crystalline. Basically, diatoms live in glass boxes. The silica shell of the diatom is called the ‘frustule’ and is made of two halves, each in turn composed of several different pieces. Hydrosera frustules, like those of all other diatoms, are perforated by many small holes, which allow water, dissolved material and solids (gases, inorganic nutrients, and organic substrates and secretions) to pass in or out.

    assemblages.250a

    Left: Living diatoms and other algae from a freshwater loch in Scotland. Right: False-colour picture of a subfossil assemblage from a muddy deposit a few metres below the surface of a mire in SW Scotland. © 2008 David G. Mann

    The silica of the diatom cell wall is resistant to decay, although it will begin to dissolve once its organic coating has been stripped off. Once incorporated into silica-rich sediments, however, frustules may survive for hundreds to millions of years and can be used to monitor changes in freshwater or marine environments. The left-hand picture above shows a spread of living diatoms and other algae from a freshwater loch in Scotland. Each cell contains one to several brownish chloroplasts. Shown in the right-hand (false-colour) picture is a subfossil assemblage from a muddy deposit a few metres below the surface of a mire in SW Scotland. Here, all the cells are empty – only the cell walls remain; indeed, in many cases the cell walls have fallen apart into their component pieces. But it is still possible to identify them, because the walls retain their shape and pattern. Consequently, if the ecologies of the species are known, then the fossil assemblage can be used to estimate what conditions were like when it was formed. In the assemblage illustrated there are both planktonic species (the circular Cyclotella valves) and benthic species, which have become mixed together after death.

    navicula_reinhardtii_valves

    Life cycle series of Navicula reinhardtii valves. © 2008 David G. Mann

    Because of the construction of the silica frustule and the way in which cells divide, average cell size declines during the life cycles of most diatoms. The shape often changes too, as in the series of Navicula reinhardtii valves shown. It can take a long time for cells to decline to their smallest size – often several years in nature – but sooner or later there is an abrupt restitution of size, taking a few days, involving formation of a special cell, called an auxospore. This behaviour is unique.

    Variation in shape and size during the life cycle causes major problems for people trying to identify diatom species and also for taxonomists, if only a few dead specimens are available for study. If diatoms ‘miss’ the chance to form auxospores (for example, if suitable mates are not available, or if environmental conditions are unsuitable), the cells continue to divide, getting smaller and smaller until they die.

    Characteristics

    Diatoms share several characteristics with some or all other heterokont algae, including (see also van den Hoek et al. 1995):

    • plastids that are enclosed by four membranes. The inner two are homologous with the two membranes surrounding the plastids of Rhodophyta, Chlorophyta and Glaucophyta. The outer two, often referred to as ‘chloroplast endoplasmic reticulum’ reflect the origin of the heterokontophyte plastid as a secondary endosymbiont, related to extant Rhodophyta.
    • between the outer and inner chloroplast membranes, there is often a network of anastomosing tubules called the periplastidial reticulum.
    • grouping of the thylakoids into stacks of three (lamellae) within the plastid.
    • presence of a girdle lamella beneath the plastid membranes, surrounding all the other lamellae.
    • chlorophylls a and c and fucoxanthin as the major light-harvesting pigments for photosynthesis.
    • chloroplast DNA usually concentrated within a ring-shaped nucleoid at the periphery of the plastid (but there are exceptions in some diatoms!)
    • a β-1,3-linked glucan as the main reserve polysaccharide.
    • possession of special tripartite stiff hairs (‘mastigonemes’) on a flagellum.
    • mitochondrial inner membrane developed into tubular invaginations.

    Diatoms share with the bolidophytes a unique 2 amino-acid insertion in the large subunit of Rubisco.

    The characteristics of diatoms are that:

    • all species are unicellular or colonial coccoid algae. None are free-living flagellates.
    • the only flagellate cells produced are the male gametes (= sperm, spermatozoids) of ‘centric’ diatoms. These have a single forward-pointing flagellum, which bears mastigonemes.
    • the relative proportions of the chlorophylls and fucoxanthin produce a yellow-brown or greenish-brown colour in the plastids.
    • most have a large central vacuole or pair of vacuoles.
    • cells (especially during stationary-phase) often accumulate large quantities of lipids and fatty acids; polyphosphate bodies are also present and sometimes take the form of discrete spherical or complex ‘volutin’ granules, one per vacuole.
    • secretion of extracellular polymeric material (usually polysaccharides) is common, as stalks, pads, capsules, tubes, chitin fibres, or trail material from locomotion.
    • all cells (except the gametes and endosymbiotic diatoms) possess a bipartite cell wall comprising two overlapping halves.
    • each half-wall itself consists of a large end-piece, the ‘valve’, and several or many narrow bands or segments, which together form the ‘girdle’.
    • the cell wall is almost always heavily silicified.
    • cell wall elements (valves, girdle bands, and auxospore scales and bands) are formed intracellularly, in special membrane-bound ‘silica deposition vesicles’ associated very closely with the cell membrane; they are not secreted from the cell until they are complete.
    • new wall elements are always produced within the confines of an existing cell wall. As a result, average cell size usually decreases with successive mitotic divisions during the life cycle.
    • size is restored via the formation and expansion of a special cell, the auxospore, which is usually a zygote. The basic shape of each diatom species is largely created during the expansion of the auxospore, but is often modified during subsequent mitotic cell divisions.
    • during vegetative mitoses, the nucleus always lies to one side of the cell immediately beneath the girdle, at the edge of the hypotheca.
    • mitosis is open, the nuclear envelope breaking down before metaphase; the spindle is a narrow cylinder, persistent at telophase, consisting of two interdigitating half-spindles, each associated with a polar plate.
    • the chromosomes bunch closely around the cylindrical spindle at metaphase, becoming impossible to separate and count.
    • cytokinesis occurs through cleavage.
    • the life cycle is strictly diplontic: as far as is known, all vegetative cells of all species are diploid, and all mitoses take place in the diploid phase. However, haploids have occasionally been grown in culture in a few species.
    • they occur just about everywhere in aquatic and damp terrestrial habitats, providing that photosynthesis is possible!
    • they are amazingly diverse, with hundreds of genera and perhaps 200,000 species (Mann & Droop 1996), of which only a tenth have been described so far.

    Relationships of Diatoms to Other Groups

    Despite a number of studies to examine phylogeny, using one or several genes, the relationships of diatoms to other groups are still unclear and there is still a huge gap in our understanding of how and when diatoms acquired their unusual morphology and life-cycle characteristics. The diatoms have often been treated as a separate phylum, reflecting their unique features. Pascher (1914, 1921) suggested that the diatoms have features in common with the Chrysophyceae and Xanthophyceae and therefore placed these classes and the Bacillariophyceae in the phylum Chrysophyta. Ultrastructural and molecular sequence data have confirmed the general thrust of Pascher’s idea, placing the diatoms unambiguously among the heterokont protists (‘stramenopiles’) within the chromalveolates (Adl et al. 2005).

    In the past, it was sometimes suggested that diatoms evolved well before their appearance in the fossil record and that the early phases in diatom evolution were lost long ago through diagenesis of diatomites to chert (e.g. Round 1981). This is made extremely unlikely by recent molecular phylogenies, which date the origin of diatoms towards the beginning of the Mesozoic Era. Furthermore, a close relationship to other silica scale or silica skeleton-producing algae and protists, such as the Chrysophyceae, is not evident in recent analyses. The closest known relatives of the diatoms are the bolidophytes (Bolidophyceae), which are a small group of marine autotrophic picoplankton with the same kind of plastids and flagellum structure as diatoms and some other autotrophic heterokonts (Guillou et al. 1999). However, bolidophyte cells are highly reduced and simplified and do not seem to produce any silica structures, although it is possible that silicifying life cycle stages have been missed.

    Mann and Marchant (1989) suggested that another group, the Parmophyceae, may also be closely related to diatoms and thus may give hints as to how diatoms arose, because they produce silica scales that in some respects (radial pattern subtended by a central ring, space-filling development of pattern) resemble diatom valves and girdle bands. So far, no DNA sequences have been confirmed to be derived from Parmophyceae, but a clade of unknown heterokonts closely related to diatoms and bolidophytes has been detected by Lovejoy et al. (2006) and may represent the Parmophyceae; it is certainly important for understanding the evolution of both bolidophytes and diatoms that the organisms detected by Lovejoy et al. are fully characterized.

    Round and Crawford (1981) and Mann and Marchant (1989) developed hypotheses about how the diatom frustule evolved, based on comparative morphology. Both suggested that diatoms probably arose from scaly celled ancestors. The scale-case was thought initially to have been homogeneous (all the scales were fairly alike in size, shape and structure). Then there was a stage in which the scales became differentiated into larger valve-like scales and narrower ones that resembled the segments found in the girdles of modern Rhizosolenia species (though this is not meant to imply that modern rhizosolenids are a basal offshoot), and a still later stage when the proto-girdle bands became even narrower, forming hoops around the cell.

    According to this evolutionary progression, valves and girdle bands would have a common origin, which seems reasonable because their structure is often similar and they are formed in similar ways. Furthermore, cells covered evenly with scales are known in diatoms, in the auxospores of some centric diatoms, e.g. Melosira orEllerbeckia (Crawford 1974, Schmid & Crawford 2001).

    The main differences between the Round–Crawford and Mann–Marchant hypotheses are in the assumptions made about the nature of the scales and scaly cell in the early (‘Ur’) diatoms and the nature of the scaly cells themselves. In the Mann–Marchant scheme, the scales of the pre-diatom were space-filling structures, which abutted to form the complete, functional cell wall of a temporarily dormant cyst, whereas Round and Crawford envisaged the scales as separate elements that did not abut but were imbricate, covering growing vegetative cells as in modern synurophytes.

    No precursors of diatoms have been identified from the fossil record.

    Discussion of Phylogenetic Relationships

    Just as it is something of a mystery at present as to how and why the diatoms arose from among the other heterokont algae, so also we have little idea about relationships among the major lineages within the diatoms. At the generic level and, to a lesser extent, within families of diatoms, considerable progress has been made during the last 40 years, as a result of huge injections of new information and analysis, first from electron microscopy (particularly scanning electron microscopy), then from examination of cell structure and sexual reproduction – which are characteristics previously ignored by most diatomists – and most recently from molecular phylogenetics. However, these data have not yet provided a clear idea of higher-level relationships in diatoms, among families, orders and classes. Round et al. (1990) described many new genera and resurrected others from obscurity, on the basis of morphological and cytological surveys; these have on the whole been supported by subsequent investigations, including studies based on molecular data. Round et al. also provided a new framework of classes, orders and families to ‘hold’ the revised genera. These have not been so successful. Gene sequence data have shown over and over again that informal analysis of relationships, based on morphology, often fails to reveal the true pattern of evolution. The problem seems to be that parallel or convergent evolution of shape and wall structure has been rampant within the diatoms. But in many cases, molecular analyses have also failed us thus far, partly because of convergent evolution and partly because of analytical difficulties, such as establishing homology in rDNA sequences and hence developing a correct alignment matrix.

    Round et al. divided the diatoms into three classes: Coscinodiscophyceae, Fragilariophyceae and Bacillariophyceae, which correspond to three of the main types of valve organization. The Coscinodiscophyceae were to be recognized by having valves in which the pattern of ribs and striae (lines of pores) radiates out from a ring (the annulus). In the Fragilariophyceae, the pattern was feather-like, with the ribs and striae being arranged either side of one or two longitudinal ribs or strips (sterna). And in the Bacillariophyceae, the pattern was similar to that in in the Fragilariophyceae, except that the central strip contained a raphe system. Informally, these three structural variants can be referred to as ‘centrics’ (Coscinodiscophyceae), ‘araphid pennates’ (Fragilariophyceae) and ‘raphid pennates’ (Bacillariophyceae).

    Although analyses of molecular sequence data have not yet provided us with a clear picture of the early evolution of the diatoms, one thing has become obvious: the Round et al. three-class system is wrong, if the aim is to reflect phylogeny. The phylogenetic trees that have been published during the last 15 years disagree in many respects, but all show the primary radiation to have occurred among diatoms with a centric valve structure, the pennates having evolved later, from ancestors with centric structure. Furthermore, the Fragilariophyceae are not monophyletic, being paraphyletic with respect to the Bacillariophyceae. So, of the three Round et al. classes, only one – the Bacillariophyceae – is satisfactory.

    The main features that appear in several phylogenetic trees (once the topologies of the trees have been simplified to include only those relationships that have good statistical support) are:

    1. a basal polytomy of clades, all but one of which have circular valves (very rare exceptions) with a centric valve pattern and monopolar or radial symmetry; the clades with circular valves and centric organization are often referred to as the ‘radial centrics’. The ‘radial centrics’ may be a monophyletic group and appear so in some published trees; on the whole, however, it appears that they are not.
    2. a further clade in the basal polytomy that comprises the remainder of the centric diatoms and all of the pennate diatoms. The centric diatoms in this clade usually have a polar organization. The pattern still radiates from an annulus, but the valves are usually elliptical or elongate, triangular or triradiate, etc, and the structure of the valve shows bi- to multipolar symmetry; circular valves are uncommon and possible secondarily derived. Centric diatoms of this kind are often referred to as ‘polar centrics’.
    3. the polar centrics rarely appear in molecular phylogenies as a monophyletic group; instead, they are usually paraphyletic with respect to the pennate diatoms.
    4. the pennate diatoms are monophyletic.

    Medlin & Kaczmarska (2004) proposed a replacement for the Round et al. scheme, based on interpretations of molecular and some nonmolecular data, in which the diatoms were divided into two subphyla, Coscinodiscophytina (= ‘radial centrics’) and Bacillariophytina (‘polar centrics’ + pennates), and the Bacillariophytina in turn into two classes, the Mediophyceae (‘polar centrics’) and Bacillariophyceae (pennates). Note that Medlin & Kaczmarska’s use of ‘Bacillariophyceae’ (all pennate diatoms) differs from that of Round et al (1990) (only raphid pennate diatoms). It is very likely that the Mediophyceae are paraphyletic and quite likely that the Coscinodiscophytina are also paraphyletic. Because of this, and because some published molecular analyses are said not to be repeatable, the Medlin–Kaczmarska scheme has been heavily criticized (e.g. Williams & Kociolek 2007). However, the new classification does have the virtue, relative to the Round et al. (1990) classification, that it reflects better the finding, now generally agreed and consistent with the fossil record, that diversification occurred first among diatoms with a centric valve structure, and that pennates evolved later from within one out of several or many centric clades. Although this is not a new idea (e.g. Simonsen 1979), it was only one of many possibilities aired before the advent of molecular systematics (see Mann & Evans 2007).

    Adl et al. (2005) adopted Medlin & Kaczmarska’s names but noted that the Coscinodiscophytina and Mediophyceae might be paraphyletic. Here, Medlin & Kaczmarska’s formal taxa are used only where there seems to be good support for monophyly (i.e. the Bacillariophytina and Bacillariophyceae). Nevertheless, it is often useful to distinguish Medlin & Kaczmarska’s Coscinodiscophytina and Mediophyceae informally, as ‘radial centric diatoms’ and ‘polar centric diatoms’, to highlight what seems to be a well-established feature of diatom evolution, that complex shapes and bi- or multipolar structure developed in one clade of centric diatoms (within which the pennates evolved later), but not in several others.

    Global Significance

    It has been known for a long time that diatoms are abundant in aquatic habitats, forming an essential part of many food chains. However, it was not until the 1990s that their huge contribution to the global carbon economy began to be fully appreciated. A back-of-the-envelope calculation (Mann 1999) goes like this:

    • total net primary production for the globe is ~ 105 Pg carbon per year (Field et al. 1998)
    • of this, about 46% occurs in the oceans and 54% on land (Field et al. 1998)
    • of the oceanic component, about one-quarter (11 Pg) takes place in oligotrophic (nutrient-poor) regions, one-quarter (9.1 Pg) in eutrophic (nutrient-rich) regions, and half (27.4 Pg) in the remaining mesotrophic regions (Field et al. 1998)
    • diatoms account for no more than 25-30% of primary production in nutrient-poor waters, but perhaps 75% in nutrient-rich regions (Nelson et al. 1995); so, assume an intermediate value of 50% for mesotrophic waters
    • the total contribution made by diatoms is then {(11 × 0.25) + (27.4 × 0.5) + (9.1 × 0.75)} = 23.275 Pg carbon per year, which is ~ 23.5% of the global total

    It’s probably an overestimate, but the importance of diatoms is evident nonetheless. For comparison, all the world’s tropical rainforests fix 17.8 Pg, all the savannas 16.8 Pg, and all the world’s cultivated area another 8 Pg. The fate of the carbon that diatoms fix is now a crucial issue in climate-change research.

    Another way to appreciate diatoms is to realize that they give us every fifth breath, by the oxygen they liberate during photosynthesis.

    General Texts

    Round, F.E., Crawford, R.M. & Mann, D.G. (1990). The diatoms. Biology and morphology of the genera. Cambridge University Press, Cambridge. 747 pp.

    Stoermer, E.F. & Smol, J.P. (1999). The diatoms. Applications for the environmental and earth sciences. Cambridge University Press, Cambridge. 488 pp.

    van den Hoek, C., Mann, D.G., Jahns, H.M. (1995). Algae. An introduction to phycology. Cambridge University Press, Cambridge.

    References

    Adl, S.M., Simpson, A.G.B., Farmer, M.A., Andersen, R.A., Anderson, R.A., Barta, J., Bowser, S., Brugerolle, G., Fensome, R., Fredericq, S., James, T.Y., Karpov, S., Kugrens, P., Krug, J., Lane, C., Lewis, L.A., Lodge, J., Lynn, D.H., Mann, D.G., McCourt, R.M., Mendoza, L., Moestrup, Ø., Mozeley-Standridge, S.E., Nerad, T.A., Sheraer, C., Spiegel, F. & Taylor, F.J.R. (Max) (2005). The new higher level classification of eukaryotes and taxonomy of protists. Journal of Eukaryotic Microbiology 52: 399-451.

    Field, C.B., Behrenfeld, M.J., Randerson, J.T. & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237-240.

    Crawford, R.M. (1974). The auxospore wall of the marine diatom Melosira nummuloides (Dillw.) C. Ag. and related species. British Phycological Journal 9: 9–20.

    Guillou, L., Chrétiennot-Dinet, M.-J., Medlin, L. K., Claustre, H., Loiseaux-de Goër, S., Vaulot, D.: Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). Journal of Phycology 35, 368–381 (1999).

    Lovejoy, C., Massana, R. & Pedrós-Alió, C. (2006). Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Applied and Environmental Microbiology 72: 3085–3095.

    Mann, D.G. (1999). The species concept in diatoms. Phycologia 38: 437-495.

    Mann, D.G. & Droop, S.J.M. (1996). Biodiversity, biogeography and conservation of diatoms. Hydrobiologia 336: 19–32.

    Mann, D.G. & Evans, K.M. (2007). Molecular genetics and the neglected art of diatomics. In: Unravelling the algae – the past, present and future of algal systematics (Ed. by J. Brodie & J. Lewis), pp. 231-265. CRC Press, Boca Raton, Florida.

    Mann, D.G. & Marchant, H. (1989). The origins of the diatom and its life cycle. In J. C. Green, B. S. C. Leadbeater & W. L. Diver (eds.) The chromophyte algae: problems and perspectives (Systematics Association Special Volume 38), pp. 305–321. Clarendon Press, Oxford.

    Medlin, L.K. & Kaczmarska, I. (2004). Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43: 245–270.

    Nelson, D.M., Tréguer, P., Brzezinski, M.A., Leynaert, A. & Quéguiner, B. (1995). Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biochemical Cycles 9: 359-372.

    Pascher, A. (1914). Über Flagellaten und Algen. Berichte der Deutschen Botanischen Gesellschaft 32: 136–160.

    Pascher, A. (1921). Über die Übereinstimmung zwischen den Diatomeen Heterokonten und Chrysomonaden. Berichte der Deutschen Botanischen Gesellschaft 39: 236–248.

    Round, F.E. & Crawford, R.M. (1981). The lines of evolution of the Bacillariophyta. I. Origin. Proceedings of the Royal Society of London, B 211: 237–260.

    Schmid, A.-M.M. & Crawford, R.M. (2001). Ellerbeckia arenaria (Bacillariophyceae): formation of auxospores and initial cells. European Journal of Phycology 36: 307–320.

    Simonsen, R. (1979). The diatom system: ideas on phylogeny. Bacillaria 2: 9–71.

    Williams, D.M. & Kociolek, J.P. (2007). Pursuit of a natural classification of diatoms: history, monophyly and the rejection of paraphyletic taxa. European Journal of Phycology 42: 313-319.

  • 如何判断中肋骨条藻的状态

    如何判断中肋骨条藻的状态

    由于中肋骨条藻的实验室培养比较困难,1.5年左右就会衰退,需要重新在海域采集,因此很多客户在实验室判断中肋骨条藻的状态就遇到困惑。

    中肋骨条藻状态好的话,细胞一个一个的很饱满,连成10~30个每条链,由于没有鞭毛,它不会动的。

  • 有没有简单方法脱出或者提取藻中蛋白质

    有没有简单方法脱出或者提取藻中蛋白质

    Bead beating(蛋白反复珠磨法)提取藻中蛋白质效果直接,处理简单

  • 什么藻可以超低温保存

    什么藻可以超低温保存

    超低温保存只适合于部分硅藻和蓝藻,并不是所有藻都合适,有鞭毛的藻也不能进行超低温保种,即使保种成功了,成活和复壮率很低的,只有不到10%左右。成活的从低温取出到完全复壮也要3个月时间。

  • 耐高温的海水藻有哪些

    耐高温的海水藻有哪些

    一般的海水藻比较耐受高温的有湛江等鞭金藻,硅藻的话一般是中肋骨条藻。基本比其他藻类可以耐受较高的水温

  • 培养夜光藻的方法

    培养夜光藻的方法

    培养夜光藻的关键并不是培养基的配方而是在于混养,夜光藻需要吃藻才能生长良好,一般可以考虑混养扁藻

  • 藻类如何破壁

    藻类如何破壁

    藻类细胞破壁技术作为一种高科技手段,其应用十分广泛。除病毒外,一切生物均由细胞构成,根据细胞内核结构分化程度的不同,细胞可以分为原核细胞和真核细胞两大类型。细胞壁(cellwall)是细胞的外层,在细胞膜的外面,细胞壁之厚薄常因组织、功能不同而异。植物、真菌、藻类和原核生物都具有细胞壁,而动物细胞不具有细胞壁。细胞壁本身结构疏松,外界可通过细胞壁进入细胞中。

    藻类的细胞破壁最有效的方法就是采用液氮研磨

    液氮研磨在分子生物学实验中应用广泛,特别是有关核糖核酸(RNA)、脱氧核糖核酸(DNA)的分离。液氮的温度为一196℃,它既能使各种组织成分不易被破坏或降解,又能使组织变硬,脆性增加易于磨碎。正是由于液氮的温度极低,操作时要特别小心。液氮研磨,一是为了终止细胞内外一切生物反应,比如提取RNA时,防止RNA酶的降解反应等;还有一个原因,就是在液氮中的细胞完全冻硬了,研磨可以达到很好的破胞效果,将细胞磨成粉,使里边的物质释放出来。

  • 清除藻类培养瓶上白色物质

    清除藻类培养瓶上白色物质

    有谁知道藻类培养过后,培养瓶上留下来的一层白色物质是什么?有什么办法在洗瓶子的时候把它清理干净?我看那个放培养液的瓶子里也会残留一点,但是没有培养藻液瓶子里的留得多

    答:这些白色物质一般是盐沉淀,用稀盐酸或者高锰酸钾泡 

  • 哪个牌子小球藻好

    哪个牌子小球藻好

    不管哪个品牌的小球藻片,小球藻粉,小球藻饮料制品,小球藻添加剂,上海光语生物科技有限公司的工程师都建议采用纯发酵 的小球藻原粉作为原料,才是最好最可靠的小球藻产品。

    小球藻粉的发酵工艺和浓缩小球藻液的工艺完全不同,并非简单使用浓缩小球藻干燥获得,两者采用的是完全不同的国际顶尖工艺,避免了传统的光养开放式培养过程中小球藻吸收了环境中的重金属以及其他有害物质,是最优质的小球藻保健药品、食品、饮料的原材料。

    小球藻由于具有纯天然、非提纯、均衡含有人体所需的全面营养素和独特的绿藻生长因子(CGF)、最高的叶绿素含量和碱性生成量,以及独有的排毒功能等显著品质,而成为最科学、最合理、最可靠和最有效的纯植物健康补助食品。

    上海光语生物科技有限公司小球藻粉所采用的生产工艺经过多年的技术沉淀,伴随着现代生物科技的发展更成就了其产品的至臻至纯。产品因行销日本,欧美等世界各地而著名并备受用户信赖。

    上海光语生物科技有限公司小球藻粉发酵工艺选择优质纯种的蛋白核小球藻,在经过洁净化处理的淡水及充足阳光的照射和清新空气的天然环境中,用先进的质量控制及养殖技术进行培育,再经过纯化发酵工艺和独有的破壁技术处理,以领先的生物加工工艺和严格的品质检验精制成高纯度,高吸收率,高活性,富含人体所需均衡营养素的高品质小球藻粉。

    100%小球藻,不添加任何添加剂,并非一般产品可做得到。
    世界技术最先进的小球藻发酵异养工艺,专业的生产厂商,营养按需定制
    最高的C.G.F.(小球藻生长因子)含量!
    味道是浓纯正的水藻香味,但不腥臭
    颜色浓绿色,表面均匀,没有杂质(斑点)感,表面柔润

  • 泥鳅吃什么

    泥鳅吃什么

    泥鳅被誉为“水中人参”,其味道鲜美,肉质细嫩,营养丰富。 泥鳅养殖是高效设施渔业发展中涌现出的一项新兴产业。由于具有极高的营养价值与药用功效,泥鳅的市场需求稳健,销售价格相对稳定,从而吸引了不少民间资本投资泥鳅养殖。

    在泥鳅育苗阶段需要大量的轮虫和藻类作为泥鳅的开口饵料,而培养轮虫也需要大量的藻类,上海光语生物科技有限公司的浓缩小球藻液具有纯度高,浓度高,蛋白高的特点,采用全球顶尖的异养发酵技术,使得小球藻浓缩液的品质位居活饵产品前列。

    国内某大型泥鳅养殖场以轮虫为饵料的泥鳅苗存活率高于仅仅以蛋黄为饲料的实验组,且以单独添加轮虫的清水实验组成活率最高,但是以同时添加小球藻和蛋黄实验组的泥鳅鱼苗最为壮硕、规格整齐。

    但蛋黄与轮虫混合投喂并添加了小球藻后,泥鳅鱼苗的成活率大幅度提高,且个体明显大于单独投喂轮虫的鱼苗。由此可见蛋黄所富含的磷脂和胆固醇可以作为泥鳅发育所需的营养,通过轮虫滤食后传递给泥鳅鱼苗,提高了轮虫的营养价值;同时在培育水体中添加小球藻,既减少了蛋黄对水质的负面影响并稳定了水质,又起到强化轮虫营养的作用。

    因为泥鳅鱼苗游动能力较弱,主动摄食能力不强,因此在投喂饵料的方法上还要注意以下几个问题。

    ①投喂蛋黄时要均匀,并采用少量多次的方法,避免或减少下沉。

    ②尽量采用轮虫与蛋黄搭配组合的方法投喂,充分利用轮虫和蛋黄营养的互补性,减少了蛋黄恶化水质的可能性。

    ③少量补充单细胞藻类,利用藻类的光合作用增加水体溶氧并净化水质,同时避免藻类浓度过高,影响泥鳅鱼苗的正常发育。

    ④保持一定的充气量,维持水中的溶解氧,促进有机物好氧分解,避免有机物厌氧分解产生有毒的中间物质和终产物,维持和改善水质。同时连续曝气可以减少蛋黄等饵料下沉并使之分布均匀;但是充气以微沸状态为宜,避免泥鳅鱼苗逆水游动而耗费体力。

    由此可见,泥鳅养殖需要大量的轮虫和小球藻,轮虫的培养也需要大量的小球藻,稳定和优质的小球藻供应是泥鳅养殖的必须掌控的重要环节。

    上海光语生物科技有限公司所采用的小球藻异养发酵技术,产能不受天气影响,保证稳定供给,可以根据客户需求定制小球藻的营养组成,同时可以根据用途不同,采用不同工艺将小球藻浓缩液做成投喂功能和肥水功能两种规格。

  • 螺旋藻有哪些真实准确的作用

    螺旋藻有哪些真实准确的作用

    市面上常见的螺旋藻突出它的保健效果,我们没有此领域的补充,主要是从螺旋藻营养组成角度分析螺旋藻的作用。

    WHO于2008年公布的《6个月到5岁中度营养不良儿童的食物与营养成分选择》对于螺旋藻的推荐意见:“有些研究显示螺旋藻对于改善儿童中度营养不良可能有一定帮助。”因此联合国有个计划就是在非洲粮食短缺地区推广螺旋藻以解决粮食危机IIMSAM Sustainable Spirulina Outreach Program .:. Sustainable Development Knowledge Platform

    201203301053031772d

    根据对螺旋藻的成分分析,螺旋藻蛋白质含量的确很高,但仅限于和一般蔬菜相比。牛奶鸡蛋的蛋白质含量不但更高,还更优质.某些地方有螺旋藻锅底的火锅,据说味道不错。

    FAO在1974年说过螺旋藻是“未来最佳食品”,可FAO这个定义也明确指出:只有在特定情况下,即粮食极度缺乏,资源匮乏,螺旋藻才可以作为一种投入产出比较高的作物暂时替代常规食品。这一点在2008年FAO发布一份报告也有体现。

    这份报告推荐的螺旋藻开发方向是:解决贫困地区的营养问题;废水处理;代替部分家禽、牲畜以及渔业养殖的饲料以降低生产成本;在紧急状况下暂时解决粮食问题。

    “暂时解决粮食问题”完全是一种应急措施,只有在遭受地震、洪水或者其他自然灾害之后,常规粮食难以生产行的情况下,才可以生产螺旋藻来充饥。

    NASA和欧航局在上世纪80年代将螺旋藻作为宇航员长期太空生存的推荐食物的原因,也是源自空间站的空间限制。因此在特殊年代和背景下,FAO以及IIMSAM等国际组织对于螺旋藻的积极态度,也都只是着眼于它有助于解决粮食短缺问题而已。

    螺旋藻主要的营养成分是藻蓝蛋白,其他的都次要,国内有实验室以前做过将藻蓝蛋白与癌细胞融合,结果使得癌细胞弱化了不少,当然这个可能不能直接证明抗癌作用。

    在韩国78名60岁以上老年人中进行的:连续16周、每天服用8克的螺旋藻补充剂的受试者比服用安慰剂者,其胆固醇水平降低,一些免疫系统功能指标亦有提升。螺旋藻就是蛋白质含量高(高于60%)而已,最大的功效就是可以作为日常摄入营养替代品。

     

  • 浓缩小球藻液如何肥水

    浓缩小球藻液如何肥水

    每年开春在投喂鱼苗虾苗蟹苗之前基本都要进行肥水,让水里有更多的浮游动物,我们一般建议客户使用藻类浓缩液进行肥水,传统的自养藻基本只能保存5-7天。肥水用的浓缩藻液甚至一个活藻都没有,而仅仅是一些藻类培养基。

    上海光语生物科技有限公司推出的小球藻水质改良剂,富含活体异养小球藻,常温保存在10-13天左右,而且活性极高。我们的小球藻液有效活性物浓度是60-70g/L,相当于纯小球藻细胞60-70亿/ml。客户使用一般的泼洒密度在按照10-50万活体细胞/ml,请按照水体营养情况以及水体容积换算。自然水体小球藻的生存极限密度是500-1000万细胞/ml(换算成干物质0.05-0.1g/L)。

    投喂浓度过高会导致水体营养物无法满足藻类生长需要造成活藻缺少营养发黄死亡。

    注意,我们的小球藻细胞浓度指的是纯小球藻活性物,不包含细菌数量。市面上的很多产品的细胞密度是包括细菌数量的,因此我们公司一般以藻液有效活性物浓度为标准即每升多少克干物质。

  • 为什么你们的小球藻浓度没有别人的高,价格却比别人的贵

    为什么你们的小球藻浓度没有别人的高,价格却比别人的贵

    为什么其他每毫升200-300亿的小球藻浓缩液才十几块到二十几块一公斤,而你们的才100亿卖得还比他们贵呢?

    市面上的小球藻浓缩液分为自养和异养稀释2种。

    一般产品的小球藻浓度每毫升200-300亿是包括细菌的数量,自养小球藻纯度做到5亿已经是极限了,而且保存时间很短。

    我们的小球藻是发酵异养,高纯度,没有任何杂质,我们的每毫升100亿是实打实的小球藻细胞。营养配比可以根据需要改变。高浓度情况下可以长时间保存。

    异养稀释的小球藻浓缩液基本上以我们公司的小球藻浓缩液原液为基础进行稀释10倍投放市场,所以价格是我们公司价格的1/10才是正常的。

  • 异养发酵小球藻浓缩液有几种类型

    异养发酵小球藻浓缩液有几种类型

    根据用途不同,我们公司的异养发酵小球藻浓缩液可以分为肥水和投喂两种用途,肥水的小球藻浓缩液浓度是每升干物质在60-70g,投喂的小球藻浓缩液浓度是每升干物质90-100g。

    投喂的小球藻浓缩液可以根据投喂对象的不同配比营养物组成,控制蛋白质,脂肪的比例。

    肥水小球藻浓缩液适用于全国大部分地区的水质,但是建议客户在大批量购买前,先购买少量试验一下。

    如需使用小球藻干粉请不要选择购买浓缩液然后干燥的方式,直接购买我们的小球藻粉性价比更高。

  • 密码保护:带鞭毛藻的大规模培养如何选择泵

    密码保护:带鞭毛藻的大规模培养如何选择泵

    这是一篇受密码保护的文章,您需要提供访问密码:

  • 如果藻类过滤在滤膜上,保存在液氮里,它还活着吗?可不可以拿出来培养一下呢

    如果藻类过滤在滤膜上,保存在液氮里,它还活着吗?可不可以拿出来培养一下呢
     一般保存到液氮要用dmso(二甲基亚砜)或或者甘油作为保护剂,如果没有加保护剂可以碰碰运气用水浴迅速解冻,有可能有极少的活细胞 。
  • 怎么培养雨生红球藻

    怎么培养雨生红球藻

    雨生红球藻的培养温度要设在23±1度,营养细胞培养阶段的光强设为1300-1600lx,促进虾青素积累的胁迫阶段光强10000-12000lx,静止培养的话每天手摇3-4次,防止粘壁。管道培养需设计相应结构。

  • 什么是小球藻浓缩液

    什么是小球藻浓缩液

    小球藻是一种圆形的大小2-10微米的单细胞绿藻类,含有优质蛋白质60%以上,碳水化合物20%,叶绿素5%,大量的矿物质,维生素和生物活性物质。浓缩小球藻培是浮游动物和初期鱼苗的最佳饵料。

    浓缩活体小球藻,是采用无菌发酵的方式生产,可以放心使用。常年稳定供应,运送迅速。完全解除了水产养殖育苗生产中饵料生物供应的后顾之忧。

    本产品纯小球藻,是针对贝类养殖、鱼虾育苗、轮虫培养等水生动物营养均衡的需要而设置的定向培养。
    产品成分: 小球藻浓缩液每毫升将近200亿个细胞。
    产品特点:
    ·使用方便,随泡随用,一年四季使用不受气候影响。
    ·新鲜活力,营养均衡。
    ·成本低廉,本产品每升可培养3—5亿轮虫,相当于养殖户培养10吨藻水。
    ·节省开支,降低风险,避免养殖户因受气候或其它因素影响,藻水密度稀或培养失败而造成的一切费用和时间的浪费。
    用法用量: 根据培养密度随机增减投喂量
    储藏方法: 放置在阴凉干燥处,避免阳光直射
    保质期限: 冷藏3个月

  • 怎么过滤死藻

    怎么过滤死藻

    螺旋藻只能用捞金鱼的400目的网,捞上层的活藻,其他的个体小的藻还是用滤纸过滤吧

    至于其他藻类很难区分死藻活藻了,不过一般手动摇过之后一段时间内活藻是悬浮于液体中的,死藻则沉降,可以将悬浮液转到干净的瓶子中离心收获活藻

如需购买藻种、光生物反应器定制,配件购买,请联系我们