驱动藻类CO₂浓缩机制的光合作用途径

衣藻细胞中CCM供能网络的机制

光合作用消耗的CO₂是人为排放量的10倍,而微藻的CO₂吸收量接近其中的一半。藻类依赖于Rubisco的催化位点浓缩CO₂的机制(CCM)增强了CO₂的固定,能够进行更高效光合作用。虽然许多参与无机碳运输和吸收的细胞成分已经被确定,但微藻如何逆热力学梯度为CO₂浓缩提供能量的机理仍然未知。本研究发现在绿藻莱茵衣藻中,分别依赖于PGRL1和Flav蛋白的环式电子传递和O₂光还原所产生的叶绿体腔内低pH对CCM的功能至关重要。研究认为腔内质子作用于类囊体bestrophin样转运体的下游,将碳酸氢盐转化为CO₂。研究进一步证实,从叶绿体到线粒体的电子传递可能通过供应ATP促进非类囊体无机碳转运体的激活。本研究提出了叶绿体向CCM供能网络,描述了藻类细胞如何将光合作用的能量分配到不同CCM过程,为将功能性藻类CCM转移到植物中以提高作物生产力提供了依据。

衣藻细胞中CCM供能网络的机制
衣藻细胞中CCM供能网络的机制

原文链接:https://doi.org/10.1038/s41586-022-04662-9

Related Posts

Read More

基于微藻的水凝胶药物递送系统用于治疗痛风性关节炎并缓解秋水仙碱副作用

痛风性关节炎(GA)由尿酸盐结晶沉积引发,临床疗法难以同时降尿酸(UA)与抗炎。裸藻(Eug)多糖可吸附 UA,秋水仙碱(Col)抗炎但副作用显著。本研究开发口服微藻水凝胶系统(Eug-Col@Fucar),以海藻糖(Fucar)负载 Eug-Col,具调节释放与肠道滞留特性,通过清除活性氧、重编程炎症微环境等抑制 GA,且改善胆汁酸代谢,缓解 Col 相关副作用,提供安全高效的 GA 治疗策略。…

Read More

人工胰腺结合PD-L1工程化β细胞微球与微藻协同改善1型糖尿病

1 型糖尿病理想治疗方案为生物材料封装胰岛 /β 细胞植入物,但免疫浸润、纤维化及缺氧导致 β 细胞存活短。本研究构建含过表达 PD-L1 的 β 细胞微球与小球藻的海藻酸水凝胶人工胰腺,PD-L1 调控免疫、β 细胞响应血糖泌胰岛素,小球藻补氧,实现小鼠血糖长期稳定,突破核心瓶颈。…

Read More

基于小球藻的多功能生物复合材料

面对传统生物复合材料制造中的高能耗与化学处理难题,本研究提出以小球藻微藻为基质的可持续解决方案。通过优化生物墨水与打印工艺,成功制备出具有多级结构的轻质材料。研究表明,氢键在羟乙基纤维素与小球藻结合中起关键作用:随水分减少,氢键网络从水介导相互作用转变为直接氢键,从而增强材料机械性能。受控脱水工艺保持了材料形态完整性,避免开裂。最终复合材料表现出1.6 GPa弯曲刚度、各向同性热传递性及0.10 W/mK导热系数,证明其作为高效隔热材料的潜力,为环境可持续需求提供了创新替代方案。…