藻类有望成为清洁可再生食物来源

螺旋藻

据美国加利福尼亚大学校园新闻网报道,今年五月,该校圣地亚哥分校生物科学部的研究人员与蓝宝石能源公司的科学家们联手,共同完成了美国环境保护署对转基因藻类的首次户外实验。在美国能源部资助的一系列实验中,研究者在真实环境中测试了一种基因工程制出的藻类。在环保署限期50天的试验条件下,科学家们从藻类中提取出了可食用的蛋白质,只是肉眼不可见。为了能看到,研究者向培养菌株中注入了由脂肪酸合成的绿色荧光蛋白。最终得到的藻蛋白呈粉末状,尝起来与冰草的味道相似,很好吃。

螺旋藻
螺旋藻

外媒《藻类研究》杂志也对实验进行了报道,原来研究人员选择了五个情况不同的区域湖泊,从中提取水样,培养两株不同的藻类菌。测试结果表明,它们的生长水平惊人地相似。由此得出结论,基因工程藻类可以在室外培育成功,并保持工程特性。最重要的是,它不会对自然原生藻类种群产生不良影响。

斯蒂芬·梅菲尔德是加州大学的生物学教授兼藻类专家,他指出,数十年来,农业专家都在使用靶向基因工程生产强大的粮食作物,保障人类的食品安全,而新研究表明,使用转基因藻类可以做同样的事。

研究的合著者,加州大学的生态学家乔纳森·舒林表示,实验表明同类型的测试未来也可以继续做,如果人们想维持未来的生活水平,就需要可持续的食物和能源,并且还不破坏环境。分子生物学和生物技术是达成这一目标的有力工具,而本实验就是评价基因工程益处和风险的第一步。

倘若不能在生产中实践,那么实验室中取得的进步将没有意义。未来几个月内,研究人员还将继续测试藻类的其他转基因类型,并进一步评估天气、季节变化和其他环境因素的影响。毕竟,藻类数量庞大,培育便利,一旦能制成食品,将解决可持续领域许多至关重要的需求。

Related Posts

Read More

双功能真菌在抑藻控藻中的反硝化与杀藻权衡:相互作用机制、有机物动态及原水处理实践。

有害藻华(HABs)对水体生态安全和公众健康构成严重威胁,寻求高效可持续的控藻技术成为研究热点。本研究聚焦双功能真菌茄病镰刀菌D7,探讨其在藻类控制中的多重机制、有机物动态及实际应用效果。结果表明,D7菌株对铜绿微囊藻的杀藻效率达80.98%,总氮去除率为88.81%,表现出同步控藻与脱氮能力。数学模型显示其优先进行反硝化,通过营造氮限制环境抑制藻胆蛋白合成,实现源头控藻。代谢响应分析证实,D7代谢活动破坏藻细胞抗氧化与光合系统,导致细胞膜破裂及胞内有机物释放,完成末端治理。平行因子分析进一步表明,D7能利用藻细胞裂解释放的类蛋白质等促生长物质进行生长,可能降低二次污染风险。原水实验验证其应用潜力:相较对照组,D7使藻属减少6个,同步实现76.96%的杀藻效率和78.86%的反硝化效率。网络分析指出,绿藻门作为k-策略藻类可能通过种间协同形成潜在生态风险。本研究提出了一种基于双功能真菌D7的可持续控藻策略,为藻华生物防治提供了新路径。…

Read More

增强乙酸补充下小球藻中二十碳五烯酸(EPA)与二十二碳六烯酸(DHA)的合成:化学诱变与适应性实验室进化联合策略

当前,从深海鱼类获取EPA和DHA这两种对心脑血管和大脑健康至关重要的Omega-3脂肪酸,面临着资源可持续性的压力。微藻,作为一种环境友好的替代资源,展现出巨大潜力,其中普通小球藻便是一个研究焦点。为了大幅提升小球藻合成EPA和DHA的能力,我们的研究团队成功运用了一套结合化学诱变与适应性进化的“强化训练”策略。我们首先使用一种名为甲基磺酸乙酯的化学诱变剂处理小球藻,并通过碘蒸气筛选法,成功找到了一株名为M41的“淀粉缺陷型”突变藻株。这株突变藻的特点是自身储存淀粉的能力变弱。随后,我们对M41进行了长期的“适应性实验室进化”培养,即在以乙酸为主要碳源的环境中不断传代,迫使它优化对乙酸的利用效率,从而更好地生长和积累目标产物。实验结果非常显著。在补充乙酸的培养条件下,M41突变株展现出惊人的生长和合成能力:其细胞密度比原来提高了93.75%,收获的藻粉干重也增加了33%;负责光合作用的叶绿素a、叶绿素b和类胡萝卜素含量均实现翻倍增长,意味着其生命活动更为活跃;最关键的突破在于,M41菌株生产的EPA和DHA含量与普通野生小球藻相比,分别飙升了485%和161%,实现了数倍的增长。…

Read More

乙酰丙酮缓解四环素对小球藻胁迫的作用:多重机制解析与生态安全性评估

本研究系统探讨了天然小分子乙酰丙酮(AA)在缓解四环素(TC)对小球藻(Chlorella vulgaris)胁迫过程中的作用机制及其生态安全性。研究发现,AA不仅显著提升了小球藻对四环素的去除能力,在培养基和水产废水中均实现了超过99%的高效去除,还明显逆转了TC对藻细胞生长的抑制作用,使其细胞密度恢复至接近正常水平。…

1 Comments

Comments are closed.