微藻细胞内氧水平调控和高产岩藻黄质藻种筛选研究获进展

微藻作为已知固碳效率最高的光合生物之一,能够通过光合作用将环境中的CO2和水中的无机碳及小分子有机碳转化为自身生长繁殖的碳源。目前,其在生物能源、天然产物生产方面具有广阔前景。随着遗传操作手段的发展,利用微藻作为底盘细胞进行合成生物学改造也逐渐开展。然而,微藻在规模化的培养过程中,尤其是在室外高温高光的条件下,通常会导致微藻细胞中活性氧(ROS)和光呼吸的过量产生,从而导致细胞生长速度降低。作为单细胞光合生物,细胞自身的放氧水平与细胞状态和环境影响息息相关,如何调控细胞内外的氧含量水平,对微藻养殖具有重要意义。

近期,中国科学院青岛生物能源与过程研究所研究员李福利带领的分子微生物工程研究组针对光合单细胞微藻细胞内氧水平调节,首次将外源透明颤菌血红蛋白基因(Vitreoscilla hemoglobin gene,vgb)转入微拟球藻(Nannochloropsis.oceanica)细胞中。透明颤菌血红蛋白能够在高氧水平下结合氧气分子,在低氧水平下释放氧气分子。引入该基因并诱导表达后,能够使其在细胞快速放氧阶段结合部分氧分子,从而降低了在光过饱和阶段细胞内氧水平,调控了细胞内的氧平衡,减少了对细胞的氧化损伤,同时降低了核酮糖-1,5-二磷酸羧化酶/加氧酶(Rubisco)的光呼吸水平。获取的转化株与野生型藻株相比,其生物量提高了7.4%~18.5%,最佳转化株中EPA含量提高了21.0%。相应地,转化株细胞内ROS水平下降了56.9%~70.0%,过氧化氢酶含量约为野生型的1.8倍。通过测定和计算溶解氧浓度,检测到转化株光呼吸水平降低;光呼吸途径相关的关键基因的表达水平比野生型低80%以上。相关研究结果表明,在光合单细胞微藻中引入透明颤菌血红蛋白可以减少在光过饱和条件下的ROS损伤和调节光呼吸,改善微藻的生长,这为藻株的工业应用提供了良好的藻种与技术支持。研究成果发表在Journal of Photochemistry & Photobiology, B: Biology上。

此外,研究人员还围绕微藻种质资源和天然产物生产进行了研究,前期通过同中科院近代物理研究所合作进行的重离子辐照海洋硅藻——三角褐指藻(Phaeodactylum tricornutum)研究,获得了大量突变藻种用以筛选海洋硅藻的天然产物——岩藻黄质(Fucoxanthin)。岩藻黄质广泛存在于大型海藻和硅藻中,对人体健康具有益处(如抗糖尿病、抗肥胖、抗炎等生理活性)。三角褐指藻是一种富含岩藻黄质的硅藻模式生物。在此前的研究中,李福利团队为了简化岩藻黄质检测方法,开发出使用分光光度计算法替代传统的使用高效液相色谱(HPLC)检测的方法,使用该方法在3~5分钟内即可完成对样品中岩藻黄质含量的检测和计算,提高了研究效率(Marine Drugs, 2018, 16, 33; doi:10.3390/md16010033)。近期,研究团队又进一步使用流式细胞技术对突变株中岩藻黄质含量进行高通量筛选研究,引入了488 nm的激发光来分析三角褐指藻的发射荧光。在710 nm处观察到一个独特的光谱峰,并发现岩藻黄质含量与该处的平均荧光强度之间存在线性相关性。通过流式细胞术来筛选由重离子辐射产生的高岩藻黄质含量的突变体,培养20天后,分选得到的细胞的岩藻黄质含量比野生型高25.5%。该工作提供了一种高效、快速和高通量的方法来筛选高产岩藻黄质的突变体。相关研究成果发表于Marine Drugs。

研究工作获得国家重点研发计划和国家自然科学基金的支持。

表达透明颤菌血红蛋白的微拟球藻细胞内氧分布和调节示意图
表达透明颤菌血红蛋白的微拟球藻细胞内氧分布和调节示意图
使用流式细胞技术对三角褐指藻进行分选,筛选高含岩藻黄质的突变株并验证
使用流式细胞技术对三角褐指藻进行分选,筛选高含岩藻黄质的突变株并验证

来源:中国科学院青岛生物能源与过程研究所

 

Related Posts

Read More

光语为您介绍——角毛藻

本文主要介绍了硅藻中常见的一类,角毛藻。角毛藻属于硅藻门,细胞呈扁椭圆形,壳面多为椭圆形,常借角毛形成链状或相互连接。它种类繁多、分布广泛,在我国近海是重要的浮游硅藻。 角毛藻生活在海水、半咸水及极少数淡水中,适宜 10℃至 39℃生长,25℃至 35℃最宜。其繁殖方式多样,包括形成复大孢子、休眠孢子和有性繁殖。 角毛藻是许多海洋动物的饵料生物,在海洋浮游生物中地位重要,但也可能在某些情况下危害水质或水生生物。常见种类如洛氏角毛藻、窄细角毛藻、牟氏角毛藻等。 中国科学院海洋研究所陈楠生课题组研究发现,胶州湾角毛藻多样性可能被严重低估。在南美白对虾养殖中,角毛藻曾作虾苗开口料,但有自身弱点,海链藻可作为替代。总之,角毛藻对海洋生态重要,深入研究其特性和生态作用,利于了解海洋生态平衡,实际应用中要合理利用,避免负面影响。…

Read More

尾水处理(四)——菌藻共生系统处理尾水的基本原理

本文主要论述了菌藻共生系统在尾水处理方面的原理、应用、优点、挑战及前景。菌藻共生是细菌和藻类相互协作的复杂生态体系,尾水中的有机污染物被细菌分解为铵盐、磷酸盐和二氧化碳等,藻类通过光合作用将二氧化碳转化为有机物并释放氧气,二者协同实现污染物去除和水质净化。该系统除能去除有机物和营养物质,还能促进悬浮颗粒絮凝沉淀、吸附重金属。实际应用中,构建和运行需考虑光照、温度、pH 值等多种因素,且在处理不同尾水时具有适应性和灵活性。但也面临筛选培养高效菌藻组合、确保系统稳定运行及藻类收获处理等挑战。尽管如此,菌藻共生系统作为潜力技术为水资源问题提供新思路,随着研究和技术完善,有望在未来发挥更重要作用,创造更清洁可持续的生态环境。…

Read More

尾水处理(三)——菌藻共生系统在日常生活尾水中的应用

本文探讨了菌藻共生系统在日常生活尾水处理中的应用。日常生活污水含有有机物、氮、磷等多种污染物,传统处理方法有能耗高、易二次污染等问题,菌藻共生系统提供了更环保可持续的方案。菌藻相互依存,藻类光合作用为细菌提供氧气并吸收氮磷,细菌分解有机物,部分还能转化氮。该系统具诸多优势,如生态友好、能耗低、成本低,产生的藻类生物质有经济价值。实际应用形式多样,如生物膜反应器和开放式池塘,但要控制光照等关键因素以保稳定运行和良好效果。尽管面临藻类和细菌生长受季节和水质影响、藻类生物质回收利用技术不完善等挑战,其应用前景仍广阔。未来随着研究和技术创新,这一系统有望在污水处理领域发挥更重要作用,实现污水净化与资源回收利用,助力可持续发展和美丽家园建设。…

Write a comment