微藻点亮城市——如何用微藻的发光性实现生物照明

藻类发出的蓝光

自1879年爱迪生发明电灯以来,照明发生了巨大的变化。

灯光下的城市
灯光下的城市

目前的LED灯虽极大地降低了电耗,但它们仍然使用相同的能源且会加剧全球的温室效应,因为大部分电能仍然来自石油和煤的燃烧。

我们需要新的方式来产生照明。

美国科学家们对发光藻类已经研究了一段时间,但从来没有计划用藻类来实现整个生物发光系统。丹麦科技大学对这个课题进行研究,表明将来有一天或许整个城市都可以用发光生物的绿松石色的蓝光进行照明

当然,目前有很多问题需要进行解决。我们可能需要将生物发光微藻的基因转入到其他高等植物中,或许高等植物能更加有效地发出光照。

 

微藻照亮黑暗

微藻中的鞭毛藻在夜晚可以发出强烈的蓝光。这种现象称为生物发光性。

藻类发出的蓝光
藻类发出的蓝光

在温暖季节的特定时间段内,从巴西到澳大利亚的赤道区域常常能见到这些藻类发出的蓝光

 

两种分子结合产生光

尽管人们在2500年前就观察到这现象,但我们仍然对藻类产光原理知之甚少。

当它们被摇晃时藻类产生蓝光,例如它们被海浪击中后。

有两个生物物质对产生光很重要,分别是荧光素酶(Luciferase)和荧光素(luciferin)

当藻类被晃动时,一系列的细胞化学反应激发,造成PH下降至6时,使得荧光素酶被激活,它结合荧光素,通过氧化反应转移能量给荧光素,这种能量以蓝光的形式进行释放。

转移能量
转移能量

至目前,这些仅是理论并没有通过实验验证。

 

生物发光细胞及生物灯

藻类使用阳光通过光合作用来开展多种生化反应活动。

你可以将微藻看做一个由阳光驱动的微小“灯泡”,它们在白天“充电”,晚上产生蓝光。

地球上有很多生物发光性动物,真菌和细菌。它们都需要食物和能量来产生光。藻类利用阳光和二氧化碳,它们都是无限的,环境友好的,碳中性的能量和物质。

可持续发展城市需要生物灯。

当微藻在封闭的容器内生长时,它们可作为生物灯,可以作为灯泡来照亮城市,商店,大楼,道路及停车场。

发光性藻类是作为生物灯的第一步,但仍然有许多挑战需要克服。藻类需要不定的摇晃来产生光照,这是一个问题。同时,由于它们的能量有限,发光仅能维持很短的时间。

 

实现生物灯仍需大量的研究工作 

实现不用摇晃且可以整晚照明的生物灯,需要考虑全新的策略。

目前,我们正在寻找出示那个基因控制发光,然后就进其转移至其他光合生物,如高等植物,建立可以整晚产生照明的发光性植物。

我们还需要花费很多时间来开展研究。不过终有一天,想象步入到一个完全沐浴在由植物产生的蓝光的夜晚城市中。

 

本文转自公众号 微藻技术与产业  https://mp.weixin.qq.com/s/lX9gRs9YvY3PKeswL_cp0Q

Related Posts

Read More

基于小球藻的多功能生物复合材料

面对传统生物复合材料制造中的高能耗与化学处理难题,本研究提出以小球藻微藻为基质的可持续解决方案。通过优化生物墨水与打印工艺,成功制备出具有多级结构的轻质材料。研究表明,氢键在羟乙基纤维素与小球藻结合中起关键作用:随水分减少,氢键网络从水介导相互作用转变为直接氢键,从而增强材料机械性能。受控脱水工艺保持了材料形态完整性,避免开裂。最终复合材料表现出1.6 GPa弯曲刚度、各向同性热传递性及0.10 W/mK导热系数,证明其作为高效隔热材料的潜力,为环境可持续需求提供了创新替代方案。…

Read More

螺旋藻脂质纳米技术:应对药代动力学挑战的口服给药新路径。

肠易激综合征(IBS)是一种常见的胃肠道功能紊乱,以腹痛、排便习惯改变和精神心理症状为特征,部分地区患病率超过20%。IBS患者因胃肠动力功能障碍,口服药物生物利用度波动显著高于健康个体,但目前缺乏针对此问题的靶向给药系统。本研究开发了口服螺旋藻纳米系统(SP@TIIAn),通过将丹参酮IIA脂质体整合于螺旋藻,用于增强IBS治疗。该系统利用螺旋藻与纳米颗粒对肠绒毛的被动靶向和增强黏附作用,相比肠溶胶囊,更能保障IBS患者的药代动力学稳定性。SP@TIIAn可有效治疗多种肠脑轴相关症状,为临床IBS药物研发提供了新替代方案。…

Read More

硅酸盐干预舟形藻-细菌共生体系:脱氮性能与微生物群落

针对舟形藻属-细菌共生系统存在的长期运行不稳定问题,本研究通过添加硅酸盐并调控光暗周期,成功实现了稳定的自养脱氮。在舟形藻(Navicula sp.)富集阶段,系统亚硝酸盐积累率达到92.05%;补充硅酸盐后,舟形藻成为优势藻种并显著促进胞外聚合物(EPS)分泌,增强的EPS诱导形成致密生物膜,为厌氧微生物生长创造有利环境。当光暗周期调整为8小时光照:16小时黑暗时,系统获得最高总氮去除率(82.69%)。微生物群落分析显示:亚硝化单胞菌(Nitrosomonas,1.26%)为优势氨氧化菌,Denitratisoma(3.75%)为优势反硝化菌。特别值得注意的是,系统在无需人工接种条件下自然富集了厌氧氨氧化菌,Candidatus Brocadia相对丰度达7.99%。…