莱茵衣藻营养条件的改变对过氧化物酶体含量的影响

茵衣藻是一种模型绿色微藻,能够利用醋酸异养生长。尽管含有完整的β氧化基因,但不能在脂肪酸上生长。最近的报道表明,藻类优先隔离而不是分解脂酰链,来用作快速重建膜。我们收集了一系列过氧化物酶体生物发生所需的潜在衣藻过氧化物素(PEXs),以表明莱茵衣藻具有一套完整的过氧化物酶体生物发生因子。为了确定过氧化物酶体参与外源性脂肪酸的代谢,我们检测了在不同营养条件下表达与过氧化物酶体蛋白N端或c端肽融合的荧光蛋白,同时加入荧光标记的棕榈酸。在光照和黑暗,有或者没有乙酸作为碳源的条件下,使用共聚焦显微镜跟踪过氧化物酶体。在细胞中,鉴定了四个主要的隔间,包括: (1)乙醛酸循环酶标记和含有过氧化物酶体靶向信号1(PTS1)三肽但缺乏脂肪酸标记,(2)脂肪酸标记,(3)乙醛酸循环酶标记,(4)PTS1标记。不到5%的隔间同时含有脂肪酸和过氧化物酶体标记物。对光学切片图像的统计分析发现,莱茵衣藻在细胞中同时携带不同的过氧化物酶体群体,并根据光照条件调节过氧化物酶体的含量。另一方面,无论培养条件如何,同时含有脂肪酸和过氧化物酶体标记物的隔室的比例都没有显著变化。结果表明,β-氧化在莱茵衣藻的过氧化物酶体群体中可能发生率较小,这支持了藻类中脂肪酸的主要代谢偏好是脂质生物合成而不是β-氧化的观点。

Related Posts

Read More

 微藻是土壤重金属污染的“绿色克星”与小麦生长的秘密盟友

微藻作为土壤重金属污染的“绿色克星”与小麦生长的秘密盟友,正逐渐成为农业可持续发展的重要力量。在“镉大米”等新闻引发公众对食品安全和土壤污染问题的广泛关注后,科学家们将目光投向了微藻这一古老而微小的生命体。微藻不仅能够有效吸附和钝化重金属,还能通过固氮、释放磷、分泌有机质等方式,为作物提供丰富的养分,从而提升土壤肥力和作物产量。…

Read More

 雨生红球藻非运动细胞萌发与休眠转换机制及氮素的调控作用   

 雨生红球藻非运动细胞萌发与休眠转换机制及氮素的调控作用   雨生红球藻作为天然虾青素的重要来源,因其合成的虾青素具有超强抗氧化活性而具有极高的经济价值。然而,其生长缓慢、培养周期长等问题制约了规模化生产。调控红色非运动细胞的萌发是提升培养效率的关键策略,但该过程的代谢适应机制尚未完全明确。本文基于现有研究,系统探讨雨生红球藻非运动细胞与运动细胞之间休眠-萌发转换的机制,重点剖析氮素在这一转换过程中的核心调控作用,旨在为雨生红球藻的高效培养及产业化应用提供理论参考。…

来自宝岛台湾的喜讯,开物生医施总团队实施的工厂废气养藻系统方案取得巨大成功,5天收一次都来不及,3天OD到21,每次清洗好几次,都是浓浓的藻。 Read More

小球藻培养基:大规模培养的关键与优化 —— 从实验室到产业化生产的核心要素

在小球藻的大规模培养过程中,培养基起着举足轻重的作用。培养基犹如小球藻生长的 “土壤”,为其提供了生长、繁殖和代谢所需的各种营养物质和适宜环境。合适的培养基配方不仅能够促进小球藻的快速生长,提高生物量和产量,还能对小球藻的细胞组成和代谢产物进行调控,满足不同应用领域的特定需求。例如,在食品和饲料行业,我们希望通过优化培养基,提高小球藻的蛋白质含量;而在生物能源领域,则需要诱导小球藻积累更多的油脂,用于生产生物柴油。…