青岛能源所在高温发酵褐藻产醇研究中取得进展

Defluviitalea phaphyphila发酵海带后,细胞结构的变化(ABE为发酵前的细胞壁和细胞,CDF为发酵后)

我国是世界上最大的海藻养殖国,占世界人工养殖的72%。常见的褐藻如海带,生物量巨大,其糖类物质的含量可以达到干重的67%,主要是褐藻胶(alginate)、海带多糖(laminaran)和甘露醇(mannitol)等。发展大藻生物质能源具有很多方面的优势,如光合作用效率高、生长速度快、生物产量大,不需淡水、不与粮争地、可充分利用近海海洋资源,糖类物质丰富且不含木质素等难利用组分,可减轻二氧化碳和近海过营养化等环境问题。因此在继纤维素乙醇、微藻产油等概念的提出和发展后,大藻生物质以其独特的优势成为生物能源转化发展的新突破点。

Defluviitalea phaphyphila发酵海带后,细胞结构的变化(ABE为发酵前的细胞壁和细胞,CDF为发酵后)
Defluviitalea phaphyphila发酵海带后,细胞结构的变化(ABE为发酵前的细胞壁和细胞,CDF为发酵后)

褐藻发酵产液体燃料技术是大藻生物能源发展的重要方向,但存在糖成分复杂、难以被已知的微生物转化等技术屏障。野生菌中尚未发现能同时发酵褐藻的主要成分的菌株。中国科学院青岛生物能源与过程研究所微生物资源团队近年来在近海沉积物挖掘了大量新颖的嗜热厌氧微生物资源。利用褐藻生物质为底物在高温条件下富集获得了一个高效发酵褐藻产醇的菌群,菌群的代表性菌株鉴定为新种Defluviitalea phaphyphila。该菌对褐藻三种主要成分的乙醇产率分别达到0.47 g/g-mannitol, 0.44 g/g-glucose和0.3 g/g-alginate,接近理论产率。更重要的是该菌株能够同时发酵三种不同氧化还原力的底物,有效平衡了褐藻厌氧发酵中氧化还原力不平衡的难题。经过72小时褐藻发酵该菌株可以产生10 g/L的乙醇,乙醇的产率高达0.25 g/g-生物质,该乙醇产量在嗜热野生乙发酵菌株中极为罕见。以上研究近期发表在Biotechnology for Biofuels上,主要由该团队副研究员冀世奇完成。论文发表后,受到Green Car Congress, EBSCO Information Service, Advanced Biofuel USA等网站及媒体推介。该研究对我国发展褐藻生物转化产业具有重要意义。

上述研究获得了国家自然科学基金、山东省杰出青年基金、所长创新基金等支持。

Related Posts

Read More

尾水处理(一):菌藻共生系统在造纸行业尾水中的应用

造纸行业产生大量废水,未经有效处理排放会严重污染环境,高效环保的尾水处理技术成为重要课题。菌藻共生系统作为新兴生物技术在其中展现巨大潜力。 该系统由相互依存、作用的细菌和藻类构成,形成复杂稳定的生态平衡,具有高效、节能、低耗优点。在造纸尾水处理中,通过细菌分泌酶分解大分子有机物,藻类吸收小分子有机物,去除有机物;细菌硝化和反硝化去除氮,藻类吸收磷,去除氮磷营养物质;藻类和细菌吸附、络合吸收重金属有害物质。 实现其有效应用要注意:根据废水特点选择和培养合适菌藻种类;精确控制温度、光照、pH 值、溶解氧等反应条件;定期监测水质指标,调整参数,维护系统运行。菌藻共生系统优势显著,能达标处理废水,成本低、能耗少、环保,未来有望在造纸尾水处理中发挥更重要作用,推动行业可持续发展与环保。…

Read More

光语为您介绍——莱茵衣藻

本文主要介绍了莱茵衣藻这一微小生物的显著特点、巨大价值与多样功能。莱茵衣藻是单细胞绿藻,呈球形或椭圆形,直径 5 至 10 微米,细胞壁轻薄透明,叶绿体充满活力,具备光合作用能力。它在科研领域是研究光合作用、细胞周期等的理想模式生物,其研究有助于深入理解光合作用机制,为提高农作物光能利用效率提供理论基础。在医药领域,可用于生产药用蛋白和生物活性物质,具有抗氧化、抗炎等作用。在环境保护方面能净化水质,在生物能源领域可转化为生物柴油,在食品工业中能作添加剂或营养补充剂,在水产养殖中是优质饵料。总之,莱茵衣藻在生物学、医学、环境科学、能源及食品工业等多领域发挥重要作用,随着科技进步,其应用有望不断拓展,为人类带来更多福祉,成为解决能源、环境和健康问题的重要力量。…

Read More

光语为您介绍——束丝藻

本文主要介绍了束丝藻这一神秘的水中生物。束丝藻是丝状蓝藻,由串珠状排列的细胞形成细长丝状体,细胞呈圆柱形,有细胞壁、细胞质和细胞器,颜色通常为蓝绿色或橄榄绿,其形态会因环境和生长阶段而异。在生态系统中,束丝藻是重要初级生产者,为其他生物提供食物,还能净化水质、吸收氮磷,缓解水体富营养化。此外,在科学研究中意义重大,有助于了解藻类生长等机制,为新技术和环保策略提供依据。但束丝藻大量繁殖也有问题,如过度生长形成水华,消耗氧气、产生毒素,威胁水生生物和人类健康。因此要加强水体环境监测管理,实现对其科学利用和有效管理,发挥其价值,服务人类与自然。…

Write a comment