超快激光应用:揭示光合藻类的集光秘密

普林斯顿大学的研究人员已经发现了光合隐芽藻类强大的集光秘密。

光合藻类已经对它们的光捕捉技术进行了数百万年的改进。因此,这些藻类拥有强大的集光系统——蛋白质吸收光然后转化成能量——科学家们一直渴望了解其中的机制并模仿它以应用在可再生能源上。

现在,普林斯顿大学的研究人员揭示了一种机制,其可以提高隐芽藻类Chroomonas mesostigmatica的光捕获效率。这些发现发表在了12月8日的《化学》期刊上,为人工集光系统如分子传感器和太阳能集热器的设计提供了有价值的见解。

隐芽藻类通常生活在其他吸收大部分太阳光线的生物体下面。相应的,这些藻类进化成依靠那些不被它们的邻居所捕获的光——主要是黄绿色光来蓬勃生长。这些藻类收集这种黄绿色光的能量,并将其传递到一个将其转换成红色光的分子网络,在其中叶绿素分子需要执行重要的光合化学。

能量通过该系统的速度既令人印象深刻,又使研究它们的科学家感到困惑。Scholes实验室的预测总是比观察到的速度慢三倍。“这些能量通过蛋白质的时间尺度——我们永远也不会明白为什么这个过程能够如此之快,”责任作者Gregory Scholes说,他是普林斯顿大学William S. Tod荣誉化学教授。

普林斯顿大学的研究人员已经发现了光合隐芽藻类强大的集光秘密。
普林斯顿大学的研究人员已经发现了光合隐芽藻类强大的集光秘密。

2010年,Scholes的研究小组发现了证据,这些快速率背后的原因是一个被称为量子相干性的奇怪现象,在其中分子可以根据量子力学概率定律而不是经典物理来共享电子激发和转移能量。但研究小组直到现在为止都无法准确解释相干性是如何加快速率的。

通过使用一种复杂的超快激光方法,研究人员能够测量分子的光吸收,并从根本上跟踪系统中的能量流。正常情况下,吸收信号会重叠,使它们不可能被分配到蛋白质复合物内的特定分子,但该小组通过将该蛋白质冷却到非常低的温度能够提高信号的对比度,Jacob Dean说,他是该文章的主要作者以及Scholes实验室的博士后研究员。

研究人员观察了该系统的能量从一个分子转移到另一个分子,从高能量的绿色光转移到低能量的红光,多余的能量以振动能的形式损耗掉。Dean说,这些实验揭示了一个特定的光谱模式,它是施主分子和受主分子之间的振动共振或者说振动匹配的一个确凿证据。

这种振动匹配使得能量的转移远远快于通过在分子之间对光激发进行分配所能传输的速度。这种效应为先前报道的量子相干性提供了一种机制。考虑到这种再分配,研究人员重新计算了他们的预测并得出了差不多快三倍的速率。

“终于,该预测变得大致正确了,”Scholes说。“原来,它需要这种完全不同的,令人惊讶的机制。”

Scholes实验室计划研究相关的蛋白质,以探讨这种机制是否在其他光合生物体中起作用。最终,科学家们希望从这些精确调节但非常强大的集光蛋白质中汲取灵感和设计原则,以创造出具有完美的能量传输特性的光收集系统。“这种机制是对这些蛋白质的最优性的一个更强大的阐述,”Scholes说。

Related Posts

Read More

小球藻的天然护肤魔法

在护肤界,“天然”“无添加” 已成为热门关键词。当我们在化妆品柜台寻找成分纯净的护肤品时,一种微小的生物 —— 小球藻,正悄然成为 DIY 护肤界的新宠。这些直径仅数微米的绿色单细胞藻类,不仅能在池塘中蓬勃生长,还蕴藏着强大的护肤能量。今天,就让我们一起揭开小球藻面膜的神秘面纱,探索它从实验室走向家庭护肤的奇妙之旅。…

基于微藻养殖的污水处理技术 Read More

当污水遇见“绿色工厂”,一场颠覆传统的环保革命

水是生命之源,但如今,水污染已成为全球性难题。工业废水泛着刺鼻气味,养殖场的粪污让溪流变黑,城市下水道涌出的泡沫富含营养,这些“暗疮”不仅威胁着生态平衡,也影响着人类健康。然而,传统污水处理方式往往面临“投入大、耗能高、二次污染”的困境。就在人们束手无策之际,一群肉眼难见的“绿色工人”——微藻,悄然揭开了水污染治理的新篇章。…

Read More

米氏凯伦藻的毒性与生态威胁及其科研价值

每当沿海水域泛起诡异的红色,人们总会联想到赤潮带来的生态灾难。作为赤潮的主要“肇事者”之一,米氏凯伦藻(Karenia mikimotoi)确实给海洋生态系统带来严重威胁。但鲜为人知的是,科学家们正在将这些“海洋杀手”转化为宝贵的科研资源,为医药、环保等领域带来新的突破。…