科学家发现光可以调节藻细胞对壁面的吸附能力

Adhesion of Chlamydomonasmicroalgae to surfaces is switchable by light. NaturePhysics, 2017

来自德国的马·普动力学与自组织系统研究所科学家发现微藻附壁的现象可以通过光进行控制。实验表明在白光条件下,衣藻表现出对壁面强烈的吸附力。在红光条件下,藻细胞几乎不吸附在物体表面。长久以来大家都知道微藻具有趋光性,但却不知道藻细胞对壁面的贴附机制可以用光进行控制。

Adhesion of Chlamydomonasmicroalgae to surfaces is switchable by light. NaturePhysics, 2017
Adhesion of Chlamydomonasmicroalgae to surfaces is switchable by light. NaturePhysics, 2017
检测衣藻对壁面吸附力的装置
检测衣藻对壁面吸附力的装置
检测吸附力的原理示意图
检测吸附力的原理示意图

通过进一步的研究,发现衣藻在蓝光条件下,会强烈的吸附于壁面。微藻使用特定光敏感蛋白来感知光线,这种“光调节开关”对壁面的吸附机制可能是微藻进化的产物。不同于海洋微藻,衣藻很多生活在潮湿的泥土中,被泥土表面掩盖,如果这些泥土表面受到阳光照射,这藻细胞会开启对壁面吸附的机制,藻细胞会紧紧贴在这些泥土表面,获得光照,进行光合作用。

不同波长光下藻细胞表现出来的吸附力(基本上波长越短,吸附力越强
不同波长光下藻细胞表现出来的吸附力(基本上波长越短,吸附力越强

 

光开-关控制藻细胞的对壁面的吸附
光开-关控制藻细胞的对壁面的吸附

这些结果并不能为藻细胞不贴壁的问题(微藻贴壁会造成光线无法进入到培养液中)提供解决方案,因为微藻还需要部分蓝光来进行光合作用。科学家正在寻找出是藻细胞内的那一个蓝光感知元件(光敏性蛋白)触发了细胞启动吸附能力,如果我们能对此元件进行修饰,或许可能解决藻细胞贴壁的问题。

为什么要研究绿藻的吸附机制。研究团队表示“对于微小的细胞而言,这种吸附力太大了,我们对这种现象非常感兴趣,同时藻细胞鞭毛的构成原理与人体内肺部纤维的组成方式非常相似”

该团队同时对解决微藻养殖过程中藻膜的形成非常感兴趣,正在研究是否可以通过除光调节外的其他方式进行解决,例如在反应器表面引入弱电荷。在很多应用中生物膜是一个很麻烦的问题,假如我们可以阻止微生物贴壁并避免形成生物膜,这将在医药、生物技术和化学工程等各方面产生重要的应用价值。

 

本文转自公众号微藻技术与产业 https://mp.weixin.qq.com/s/MPWhII2F68yrlrMlapMDxQ

Related Posts

Read More

光语为您介绍——角毛藻

本文主要介绍了硅藻中常见的一类,角毛藻。角毛藻属于硅藻门,细胞呈扁椭圆形,壳面多为椭圆形,常借角毛形成链状或相互连接。它种类繁多、分布广泛,在我国近海是重要的浮游硅藻。 角毛藻生活在海水、半咸水及极少数淡水中,适宜 10℃至 39℃生长,25℃至 35℃最宜。其繁殖方式多样,包括形成复大孢子、休眠孢子和有性繁殖。 角毛藻是许多海洋动物的饵料生物,在海洋浮游生物中地位重要,但也可能在某些情况下危害水质或水生生物。常见种类如洛氏角毛藻、窄细角毛藻、牟氏角毛藻等。 中国科学院海洋研究所陈楠生课题组研究发现,胶州湾角毛藻多样性可能被严重低估。在南美白对虾养殖中,角毛藻曾作虾苗开口料,但有自身弱点,海链藻可作为替代。总之,角毛藻对海洋生态重要,深入研究其特性和生态作用,利于了解海洋生态平衡,实际应用中要合理利用,避免负面影响。…

Read More

尾水处理(四)——菌藻共生系统处理尾水的基本原理

本文主要论述了菌藻共生系统在尾水处理方面的原理、应用、优点、挑战及前景。菌藻共生是细菌和藻类相互协作的复杂生态体系,尾水中的有机污染物被细菌分解为铵盐、磷酸盐和二氧化碳等,藻类通过光合作用将二氧化碳转化为有机物并释放氧气,二者协同实现污染物去除和水质净化。该系统除能去除有机物和营养物质,还能促进悬浮颗粒絮凝沉淀、吸附重金属。实际应用中,构建和运行需考虑光照、温度、pH 值等多种因素,且在处理不同尾水时具有适应性和灵活性。但也面临筛选培养高效菌藻组合、确保系统稳定运行及藻类收获处理等挑战。尽管如此,菌藻共生系统作为潜力技术为水资源问题提供新思路,随着研究和技术完善,有望在未来发挥更重要作用,创造更清洁可持续的生态环境。…

Read More

尾水处理(三)——菌藻共生系统在日常生活尾水中的应用

本文探讨了菌藻共生系统在日常生活尾水处理中的应用。日常生活污水含有有机物、氮、磷等多种污染物,传统处理方法有能耗高、易二次污染等问题,菌藻共生系统提供了更环保可持续的方案。菌藻相互依存,藻类光合作用为细菌提供氧气并吸收氮磷,细菌分解有机物,部分还能转化氮。该系统具诸多优势,如生态友好、能耗低、成本低,产生的藻类生物质有经济价值。实际应用形式多样,如生物膜反应器和开放式池塘,但要控制光照等关键因素以保稳定运行和良好效果。尽管面临藻类和细菌生长受季节和水质影响、藻类生物质回收利用技术不完善等挑战,其应用前景仍广阔。未来随着研究和技术创新,这一系统有望在污水处理领域发挥更重要作用,实现污水净化与资源回收利用,助力可持续发展和美丽家园建设。…

Write a comment