利用藻类实现更绿色的燃料电池

剑桥大学(University of Cambridge)的研究人员开发了一种新型的藻类燃料电池,其效率比现有的植物和藻类模型高5倍,而且生产和实际使用的成本更低。随着全球人口的增加,能源需求也随之增加。气候变化的威胁意味着迫切需要找到更清洁、可再生的替代化石燃料的替代品,而这些化石燃料不会造成大量的温室气体,并可能对我们的生态系统造成灾难性的后果。太阳能被认为是一种特别有吸引力的来源,因为在给定的时间内,地球接收太阳的能量大约是人类消耗的1万倍。

近年来,除了合成的光电器件外,双光电学(BPVs,又称生物太阳能电池)已经成为一种环保、低成本的太阳能收集方法,并将其转化为电流。这些太阳能电池利用微生物的光合特性,如藻类,将光转换成电流,可以用来提供电力。在光合作用过程中,藻类产生电子,其中一些电子被出口到细胞外,在那里它们可以为电力设备提供电流。到目前为止,所有的BPVs都显示了充电(光收集和电子产生)和功率传输(传输到电路)在一个单独的隔间里;这些电子一旦被分泌出来,就会产生电流。

在《自然》杂志上描述的新技术能源部门的研究人员生物化学、化学和物理合作开发一个两院BPV系统所涉及的两个核心流程的操作的太阳能电池——一代电子和他们的权力转换——分离。充电和电力输送往往有相互冲突的要求。例如,充电单元需要暴露在阳光下,以允许高效充电,而供电部分不需要暴露在光线下,但应能有效地将电子转换为电流,并减少损耗。

构建一个双室系统可以让研究人员独立地设计两个单元,并通过这个优化同时优化过程的性能。分离充电和电力输送意味着我们能够通过微型化提高供电单元的性能,化学和卡文迪什实验室的Tuomas Knowles教授解释道。在微型尺度下,流体的表现非常不同,使我们能够设计出更高效、内阻更低、电损耗减少的电池。

研究小组使用了经过基因改造的藻类来进行基因突变,从而使细胞在光合作用过程中产生的电荷减少。与新设计一起,这使得研究人员能够建造一个功率密度为0.5 W/m2的双光电池,这是他们之前设计的5倍。虽然这仍然只是传统太阳能电池提供的能量密度的十分之一,但是这些新的BPVs具有一些吸引人的特性。

生物化学系的Christopher Howe教授说:虽然传统的硅基太阳能电池比太阳能电池更有效率,但它们转化为电能的能量,却有其他类型的材料具有吸引力。特别是由于藻类生长和自然分裂,基于它们的系统可能需要较少的能源投资,并且可以以分散的方式生产。

研究人员称,将发电和存储部件分离也有其他好处。电荷可以储存,而不是立即使用——这意味着电荷可以在白天产生,然后在夜间使用。虽然以藻类为燃料的燃料电池不太可能产生足够的电力来为电网供电,但它们在非洲农村等地区可能特别有用,因为那里阳光充足,但没有现有的电网系统。此外,研究人员说,虽然半导体的合成光伏发电通常是在专用设备上生产的,但生产的BPVs可以由当地社区直接进行。

来自生物化学系的Paolo Bombelli博士说:这在寻找可替代的绿色燃料方面迈出了一大步。这些发展将使以藻类为基础的系统更接近实际的实施

Related Posts

Read More

珊瑚光共生与钙化中的pH调节:区间视角

珊瑚-甲藻光共生与钙化是浅水珊瑚礁生态基础。虽珊瑚结构简单,但体内存在pH差异显著的区室:酸性共生体利于碳酸氢根转化为二氧化碳供甲藻光合,碱性细胞外钙化介质促进碳酸根生成以驱动钙化。甲藻光合消耗二氧化碳升pH并供能,珊瑚通过质子泵调控pH梯度,平衡光合与钙化的酸碱影响,保障共生与钙化正常进行。…

Read More

废水处理新方案:微藻与细菌的 “共生智慧”​

本文聚焦微藻 - 细菌共生污泥(MBSS)系统处理含磺胺嘧啶(SDZ)废水的应用难题与解决方案。研究发现,通过调控微藻与活性污泥接种比例,可实现多重优化:1:3 比例下 SDZ 去除率达 99.8%,1:1 比例时氮磷回收效率最优(磷达 98.6%)。宏基因组分析表明,小球藻属等微藻与 SDZ 去除密切相关,且能促进罗丹杆菌属等降解菌成为优势菌群,同时将磺胺类抗性基因(sul1、sul2)丰度降至原来的 22.9%。该策略为含抗生素废水的高效处理、营养盐回收及抗性基因防控提供了绿色可行的方案。…

Read More

色温对水生环境中藻类生长热效应的影响

光和温度是调控藻华发生的关键因素,但目前实验室研究常存在一个明显缺陷:要么固定温度忽略光本身带来的热效应,要么把这种“光自带的热”(专业上叫内源性光热效应,简称ETP)和外界环境加热(外源热输入,简称ETI)混为一谈。其实,光的“色温”(简单说就是光的颜色深浅对应的温度属性)会决定光子的分布规律,进而影响水体里的热强度,这一点在以往研究中被忽视了。…