新型海绵过滤器能在太阳下快速释放出净化后的湖水

据外媒报道,具有讽刺意味的是,许多最需要水净化的地方却有着最不发达的基础设施。这就需要一种由太阳激活的新过滤装置。利用太阳净化水最常见的方法之一就是安装太阳能蒸馏器。虽然这种设置是有效的,但有时需要很长时间才能产生足够的饮用水。

为了寻找一种快速反应的替代品,来自普林斯顿大学(Princeton University)的科学家们开发出了一种低成本的扁平海绵状装置,它可以从湖泊或池塘中吸水然后在阳光照射下释放纯化的水。

该过滤器的核心是一种具有网状微结构的聚合物凝胶。这种凝胶被一层叫做聚多巴胺的深色物质所包围,而聚多巴胺又被一层透明的海藻衍生物质–海藻酸盐所覆盖。

当该设备漂浮在相对较冷的水中时,凝胶网呈松散和开放状态。水通过外层两层孔隙流入,然后被凝胶内部的亲水分子吸引。然而,海藻酸盐的孔隙足够小,从而使得污染物或病原体无法通过。

当滤光片从水中取出并放在阳光下时,黑暗的聚多巴胺会增加它的太阳能吸收从而导致它变热。在这个过程中,凝胶中的疏水分子相互吸引。这会导致凝胶收缩,本质上是将纯化的水从海绵材料中挤出。这些水被收集在过滤器下面的容器中。

在对该设备的测试中,它最初被放置在普林斯顿大学卡内基湖25摄氏度的水中一个小时。然后,它被拿出来放在阳光下晒一个小时–在这个过程中,它被加热到33℃并释放它吸收的水。这水被证明没有毒素和病原体,其中包括湖里发现的潜在有害微生物。

Related Posts

Read More

双功能真菌在抑藻控藻中的反硝化与杀藻权衡:相互作用机制、有机物动态及原水处理实践。

有害藻华(HABs)对水体生态安全和公众健康构成严重威胁,寻求高效可持续的控藻技术成为研究热点。本研究聚焦双功能真菌茄病镰刀菌D7,探讨其在藻类控制中的多重机制、有机物动态及实际应用效果。结果表明,D7菌株对铜绿微囊藻的杀藻效率达80.98%,总氮去除率为88.81%,表现出同步控藻与脱氮能力。数学模型显示其优先进行反硝化,通过营造氮限制环境抑制藻胆蛋白合成,实现源头控藻。代谢响应分析证实,D7代谢活动破坏藻细胞抗氧化与光合系统,导致细胞膜破裂及胞内有机物释放,完成末端治理。平行因子分析进一步表明,D7能利用藻细胞裂解释放的类蛋白质等促生长物质进行生长,可能降低二次污染风险。原水实验验证其应用潜力:相较对照组,D7使藻属减少6个,同步实现76.96%的杀藻效率和78.86%的反硝化效率。网络分析指出,绿藻门作为k-策略藻类可能通过种间协同形成潜在生态风险。本研究提出了一种基于双功能真菌D7的可持续控藻策略,为藻华生物防治提供了新路径。…

Read More

增强乙酸补充下小球藻中二十碳五烯酸(EPA)与二十二碳六烯酸(DHA)的合成:化学诱变与适应性实验室进化联合策略

当前,从深海鱼类获取EPA和DHA这两种对心脑血管和大脑健康至关重要的Omega-3脂肪酸,面临着资源可持续性的压力。微藻,作为一种环境友好的替代资源,展现出巨大潜力,其中普通小球藻便是一个研究焦点。为了大幅提升小球藻合成EPA和DHA的能力,我们的研究团队成功运用了一套结合化学诱变与适应性进化的“强化训练”策略。我们首先使用一种名为甲基磺酸乙酯的化学诱变剂处理小球藻,并通过碘蒸气筛选法,成功找到了一株名为M41的“淀粉缺陷型”突变藻株。这株突变藻的特点是自身储存淀粉的能力变弱。随后,我们对M41进行了长期的“适应性实验室进化”培养,即在以乙酸为主要碳源的环境中不断传代,迫使它优化对乙酸的利用效率,从而更好地生长和积累目标产物。实验结果非常显著。在补充乙酸的培养条件下,M41突变株展现出惊人的生长和合成能力:其细胞密度比原来提高了93.75%,收获的藻粉干重也增加了33%;负责光合作用的叶绿素a、叶绿素b和类胡萝卜素含量均实现翻倍增长,意味着其生命活动更为活跃;最关键的突破在于,M41菌株生产的EPA和DHA含量与普通野生小球藻相比,分别飙升了485%和161%,实现了数倍的增长。…

Read More

乙酰丙酮缓解四环素对小球藻胁迫的作用:多重机制解析与生态安全性评估

本研究系统探讨了天然小分子乙酰丙酮(AA)在缓解四环素(TC)对小球藻(Chlorella vulgaris)胁迫过程中的作用机制及其生态安全性。研究发现,AA不仅显著提升了小球藻对四环素的去除能力,在培养基和水产废水中均实现了超过99%的高效去除,还明显逆转了TC对藻细胞生长的抑制作用,使其细胞密度恢复至接近正常水平。…