原生生物界—双鞭毛虫门

原生生物界—双鞭毛虫门

双鞭毛虫门(Dinoflagellata)过去算作藻类植物的一门。目前被分类为囊泡藻界的一个门。约1000种。分布于池塘、湖泊和海洋中。

也有称作“甲藻门”的。但是,根据《中国生物物种名录》2011版,在双鞭毛虫门之下设有甲藻纲。Dinoflagellata是旋(希腊语的 δῖνος dinos)+鞭毛虫(flagellate)之意。

由于该门的种类有一半为自营,另一半为异营。也有很多物种是混合营养。所以长期以来植物学家与动物学家把该门划入自己的研究领域,分别称为“甲藻”与“双鞭毛虫”。植物学家把它们视作一大类的藻类,命名为Pyrrophyta或Pyrrhophyta,意为”fire algae”,其中pyrr(h)os是希腊语的“火”之意。

双鞭毛虫(甲藻)具有很高的形态多样性,一般为单细胞、双鞭毛。其染色体未结合组蛋白,首尾相接成环状,具有原核细胞的特征,被称为介核生物(mesokaryto)。由于具有从无囊泡变化为有囊泡的形态,再现其进化历史非常困难。

甲藻作为主要的初级生产者,在水生生物链中非常重要角色。

虫黄藻(zooxanthella)内共生于海洋无脊椎动物,在珊瑚礁生物学中非常重要。其它的双鞭毛虫是无色的原生生物的掠食者,还有一些是寄生生活(例如丝绒病(Oodinium),有害费氏藻(Pfiesteria))。

双鞭毛门目前已知大约有1,555个物种是海洋自由生活。另外一个估计是总共有2000个物种,其中1700个是海洋物种,其它220是淡水生活。

甲藻是主要赤潮种,其中120多种能形成赤潮,60多种为有毒种类。

原生生物界-双鞭毛虫门Protozoa-diflagellate phylum
原生生物界-双鞭毛虫门Protozoa-diflagellate phylum

1.特征

生物个体多为单细胞,少数是球胞型或丝状体。

植物体略成球形,一般是黄绿色或黄褐色。载色体为金褐色,含有叶绿素和多种类胡萝卜素,少数种类无色,腐生或寄生。

双鞭毛虫类细胞壁主要是由纤维素组成,壁上有花纹,少数种类无细胞壁。多数种类具有纵沟或纵、横沟。因此,甲藻门分为横裂甲藻纲和纵裂甲藻纲。

主要以细胞分裂和产生孢子进行繁殖。

2.分类

1753年,双鞭毛虫首次被HenryBaker描述为“使海水变为红色的微动物”,1773年由Otto Friedrich Müller命名。

1830年代,德国微生物学家C.G.Ehrenberg研究了几种水与浮游生物样本,提出了几个甲藻的“属”,甚至沿用至今,如:Peridinium、Prorocentrum与Dinophysis。

大多数甲藻有甲藻核(dinokaryon),被分类为甲藻纲(Dinokaryota),不具有甲藻核的被分类为共甲藻纲(Syndiniales).

甲藻虽然是真核生物,但它的细胞核并不是典型的真核生物细胞核,因为缺少组蛋白, 核小体且在有丝分裂时保持浓缩染色体。Dodge (1966)称甲藻核为介核(mesokaryotic),即处于细菌与真核细胞的中间状态。但甲藻细胞包含了真核细胞的典型细胞器,如高尔基体,线粒体、叶绿体。

Jakob Schiller(1931–1937)提供了海生与淡水物种的描述。Alain Sournia (1973, 1978, 1982, 1990, 1993)给出了当时的分类。Sournia(1986)给出了海生物种的图示,最新分类由Gomez给出。

纵裂甲藻纲(Desmophyceae)

原甲藻目(Prorocentrales)

横裂甲藻纲(Dinophyceae)

多甲藻目(Peridi-niales)

变形甲藻目(Dinamoebidiales)

胶甲藻目(Gloeodiniales)

球甲藻目(Dinococcales)

丝甲藻目(Dinotrichales)

夜光藻纲(Noctiluciphyceae)

共甲藻纲(Syndiniophyceae)

3.形态

甲藻是单细胞,具有1-3根鞭毛。通常,具有两根鞭毛:一根向后,称为长鞭毛;另一根鞭毛侧生,称为侧生毛. 鞭毛从细胞外壁的鞭毛孔中出露。侧生鞭毛像一条带子并螺旋挥舞,提供了大部分推进力。长鞭毛作为舵,也提供少量推进力。

甲藻的复杂的细胞外壳称为amphiesma,由扁平的囊泡组成,称为alveoli。带硬壳的甲藻是由纤维素板片构成其外壳。外壳的不同形状与组织,依赖于物种甚至是发育阶段的不同。传统上,称板片的形态构造和组合情况称为”tabulation”. 可分为六种:: gymnodinoid,suessoid, gonyaulacoid-peridinioid, nannoceratopsioid, dinophysioid andprorocentroid.纤维排出小体在很多种情况下都存在.

从事光合作用的甲藻的叶绿体有3层膜,提示甲藻在进化史上是吞吃了某些藻类获得了光合能力。一般包含叶绿素a 与c2,β-胡萝卜素,一些叶黄素类是甲藻所独有的,如多甲藻素(peridinin)、甲藻黄素(dinoxanthin)、硅甲藻黄素(diadinoxanthin)。这些色素使甲藻具有典型的金褐色。但某些甲藻通过内共生获得了其它色素,岩藻黄素(fucoxanthin)。顶复门细胞中发现的色素体,提示与甲藻有共同祖先。甲藻细胞有更常见的胞器如粗面与滑面内质网,高尔基体,线粒体,脂粒与淀粉粒,食物泡。有些甲藻甚至有光敏胞器——眼点或眼斑或更大的带有核仁的核。一种叫做Erythropsidium的甲藻具有最小的眼睛。

某些物种有内部的硅质骨架组成两个星形,其功能未知,但可以从微化石中发现。Tappan给出了甲藻内骨架的一个综述。

Erythropsidium
Erythropsidium

4.内共生

大部分虫黄藻属于甲藻范畴。甲藻与珊瑚虫的关系密切。甲藻内共生于大量的无脊椎动物或者原生生物内部,例如海葵,水母,裸鳃类,有巨型贝壳的砗磲,以及放射虫与有孔虫。许多现存甲藻是寄生的(这里的定义是从猎物的内部吃掉它,即内寄生,或者附着在其猎物身上很长时间,即外寄生)。被寄生的宿主可以是动物或者原生生物。Protoodinium, Crepidoodinium, Piscinoodinium 以及Blastodinium保留了色素体同时寄生于鱼类或浮游动物。

甲藻出现于所有水环境中,包括海洋、盐沼、淡水、包括雪和冰。

甲藻包括自养,吞噬,共生、寄生等生活方式。有光合能力的自养甲藻大约占了一半的物种。完全自养的物种是非常罕见的。有些物种是混合营养策略,如Protoperidinium是寄生兼光合作用。

食物包括细菌、蓝绿藻、小型甲藻,硅藻,纤毛虫与其他甲藻。捕食与摄取的机制非常多样。一些甲藻,包括有鞘的与无鞘的,或者通过鞭毛摆动制造的水流或者通过伪足变形,吸引猎物到胞口区域,然后吞噬。Protoperidinium conicum伸出一个大型进食管插入猎物,然后细胞外消化掉猎物。Katodinium (Gymnodinium) fungiforme,常被发现污染了藻类与纤毛虫培养,通过附着在它的猎物上,通过一个可扩展的柄摄入猎物的细胞质。海生甲藻的捕食机制还所知极少,但在Podolampas bipes观察到了伪足扩展。

5.生命期循环

大多数甲藻具有独特的细胞核,称作甲藻核(dinokaryon),其中染色体附着在核膜上。缺少组蛋白、在分裂间期保持缩聚的螺旋状态,有丝分裂时使用独特的外部的细胞质纺锤体且核膜核仁不消失。这种核曾经被认为是原核生物与真核生物的中间态,所以被称为“介核”(mesokaryotic),但现在认为这是一种高级而不是原始的风格。

大多数甲藻在整个生命期通常是dikaryotic。甲藻通常是单倍体,复制主要通过二分裂,也存在有性复制。两个个体融合为一个合子,经过一个甲藻出孢囊,然后减数分裂形成一个单倍体。

当条件不利时,通常是营养耗尽或者不充分的光照,有些甲藻极大地改变了生命期循环。两个甲藻细胞融合在一起,形成了一个游动合子。然后转入休眠,称为休眠合子。外部形成一个硬壳。当环境允许,则破壳而出,恢复正常形态。

6.有害的藻类暴发

甲藻有时形成暴发,浓度超过100万个细胞每毫升,释放出大量毒素,形成了红潮, 根据其导致的水的颜色命名。有些无色的甲藻也会暴发,形成毒潮,例如有害费氏藻(Pfiesteria)。有些甲藻暴发并不危险。夜间看到的海水的蓝色闪光是甲藻暴发时,受到扰动时的生物发光。

赤潮对贝类的影响,如蛤蚌毒素(saxitoxin),会造成瘫痪。藻类暴发对生态破坏的研究。

saxitoxin
saxitoxin

7.生物发光

在夜间,海水可以有闪光,这是由于甲藻的发光。超过18种甲藻能生物发光,多数(包括Gonyaulax)发出蓝绿光。因此当受到力学刺激—穿、游泳、波浪——海面可以发出蓝色闪光。荧光素-荧光素酶的反应是pH敏感的。当pH下降,荧光素酶改变了形状,荧光素(一种四吡咯)被绑定。甲藻使用生物发光作为一种防御机制。闪光能震慑捕猎者,或者甲藻能避开潜在的捕猎者通过这种“防盗警报”信号。

生物发光的甲藻的生态系统是非常脆弱的。

8.进化历史

甲藻化石最早出现于三叠纪中期,同时地球化学标记提示早寒武纪。

最令人吃惊的是甲藻细胞DNA的数量。大多数真核藻类平均包含0.54 pg DNA/细胞, 而甲藻估计DNA的内容为3–250 pg/细胞, 相当于约3000–215 000 Mb(作为对照, 单倍体人的的基因是3180 Mb 单倍体小麦是16 000 Mb)。多倍性或者多线性可能是这种大规模的细胞DNA内容,但DNA再聚集动力学不支持这一理论。

除了不成比例的庞大的基因组,甲藻细胞核在形态、调节、组成上也是独特的。

甲藻与其近亲,顶复门,具有不寻常的非常精简的线粒体基因组。顶复门细胞的线粒体基因组只有大约6Kb。甲藻基因组经历了很多重组,包括基因组放大、重组合,导致了每个基因或基因片段的多个拷贝或多个组合。失去了标准的停止密码子与cox3的mRNA的转结合部分,大多数基因的大量RNA编辑记录。这种变换的原因未知。

 

Related Posts

Read More

光语为您介绍——角毛藻

本文主要介绍了硅藻中常见的一类,角毛藻。角毛藻属于硅藻门,细胞呈扁椭圆形,壳面多为椭圆形,常借角毛形成链状或相互连接。它种类繁多、分布广泛,在我国近海是重要的浮游硅藻。 角毛藻生活在海水、半咸水及极少数淡水中,适宜 10℃至 39℃生长,25℃至 35℃最宜。其繁殖方式多样,包括形成复大孢子、休眠孢子和有性繁殖。 角毛藻是许多海洋动物的饵料生物,在海洋浮游生物中地位重要,但也可能在某些情况下危害水质或水生生物。常见种类如洛氏角毛藻、窄细角毛藻、牟氏角毛藻等。 中国科学院海洋研究所陈楠生课题组研究发现,胶州湾角毛藻多样性可能被严重低估。在南美白对虾养殖中,角毛藻曾作虾苗开口料,但有自身弱点,海链藻可作为替代。总之,角毛藻对海洋生态重要,深入研究其特性和生态作用,利于了解海洋生态平衡,实际应用中要合理利用,避免负面影响。…

Read More

尾水处理(四)——菌藻共生系统处理尾水的基本原理

本文主要论述了菌藻共生系统在尾水处理方面的原理、应用、优点、挑战及前景。菌藻共生是细菌和藻类相互协作的复杂生态体系,尾水中的有机污染物被细菌分解为铵盐、磷酸盐和二氧化碳等,藻类通过光合作用将二氧化碳转化为有机物并释放氧气,二者协同实现污染物去除和水质净化。该系统除能去除有机物和营养物质,还能促进悬浮颗粒絮凝沉淀、吸附重金属。实际应用中,构建和运行需考虑光照、温度、pH 值等多种因素,且在处理不同尾水时具有适应性和灵活性。但也面临筛选培养高效菌藻组合、确保系统稳定运行及藻类收获处理等挑战。尽管如此,菌藻共生系统作为潜力技术为水资源问题提供新思路,随着研究和技术完善,有望在未来发挥更重要作用,创造更清洁可持续的生态环境。…

Read More

尾水处理(三)——菌藻共生系统在日常生活尾水中的应用

本文探讨了菌藻共生系统在日常生活尾水处理中的应用。日常生活污水含有有机物、氮、磷等多种污染物,传统处理方法有能耗高、易二次污染等问题,菌藻共生系统提供了更环保可持续的方案。菌藻相互依存,藻类光合作用为细菌提供氧气并吸收氮磷,细菌分解有机物,部分还能转化氮。该系统具诸多优势,如生态友好、能耗低、成本低,产生的藻类生物质有经济价值。实际应用形式多样,如生物膜反应器和开放式池塘,但要控制光照等关键因素以保稳定运行和良好效果。尽管面临藻类和细菌生长受季节和水质影响、藻类生物质回收利用技术不完善等挑战,其应用前景仍广阔。未来随着研究和技术创新,这一系统有望在污水处理领域发挥更重要作用,实现污水净化与资源回收利用,助力可持续发展和美丽家园建设。…

Write a comment