• (+86) 0577 62356695
  • (+86) 021 80399582 分机号(先按9):801|830技术服务|817藻种|828设备|601益生菌
  • 100@leadingtec.cn
  • 点击这里给我发消息

标签: 光生物反应器

微藻可能成为可持续农业的未来

微藻可能成为可持续农业的未来

  微藻可能成为可持续农业的未来   你可能无法在早餐、午餐和晚餐时消化大豆,但你吃的动物却可以。主要农作物的种植面积是英国面积的五倍,其中85%用于动物饲料。由于预计世界人口和食肉的全球中产阶级都将迅速增长,到2050年,大豆的需求将增长80%,超过任何其他主食作物。   由于可耕地的稀缺,我们对动物产品的需求已经导致了亚马逊和其他热带雨林的大面积砍伐。需求的大幅增长很可能导致更多的破坏,而此时正是我们需要遏制全球变暖的第二大原因的时候。   但这种毁灭还不确定。我最近去冰岛考察了一项提高光合作用的尖端商业技术。它可以帮助保存生物多样性,CO₂吸吮至关重要的生态系统的健康我们的地球。   光合作用的特点   光、二氧化碳和水赋予植物生命。通过光合作用,植物将这三种成分转化为繁盛所需的重要碳水化合物。但令人惊讶的是,传统农业对这些因素几乎没有控制。它依靠阳光来灌溉,虽然灌溉大大提高了作物产量,但水资源短缺往往是农民面临的一个问题。   一片大豆地侵蚀着亚马逊雨林。   这种新方法在冰岛的Hellisheidi地热公园进行了试验,将阳光与LED灯、淡水与含盐量更高的“微咸”水以及环境空气与高浓度二氧化碳进行交换,控制它们在名为光生物反应器的创新模块中的浓度。把它们想象成核反应堆,除了以高浓度的二氧化碳和光为输入,以有机物质为输出。   这些光生物反应器的设计目的不是种植大豆,而是种植植物微生物。在管不同的形状和大小,富含微仔细搅拌,水分、光照、水,和₂。使用与NASA太空旅行系统相同的逻辑,他们回收碳、磷和氮。与传统农业相比,这些闭环模块允许更大的控制和测量的肥料和水,更高效地利用有限公司₂,风险低污染的农作物损失,害虫,风暴。   最重要的是,它们最大化了光合作用的关键成分:光的效率。通过保持微藻液的不断流动,密切调节温度和采收时间,这些微生物暴露在最大健康的光照下,摆脱了昼夜循环和天气的自然限制。   相当不同。   利用这一技术,光生物反应器可以提供与大豆相似的营养含量,且在土地和水的使用中所占比例不到0.6%。生产单位使用130 m²每年增长10500公斤的生物质–在资源效率提高200倍。   一种可伸缩的解决方案   这些反应堆的生态足迹很小。冰岛的反应堆是地热供电的,可以与任何形式的可再生电力配套使用。碳的生产成本后,他们公司₂净吸收器。它们消除了对杀虫剂和除草剂的需求。它们可以放在贫瘠的土地上,也可以像乐高积木一样垂直堆放。模块化设计甚至可以部署在城市中心。   关键是,这项技术具有成本效益。主要得益于大麻的商业化,LED技术现在比以前便宜得多,效率也更高,最近的其他工程创新也进一步降低了成本。如果把大豆种植造成的环境和社会危害的货币成本考虑在内,微藻现在的性价比要高得多,尽管生产商需要更高水平的初始投资。虽然从传统农业向技术技能的转变需要短期的密集培训,但对农民和各州来说,这种成本将被更大的利润和更容易的生产所抵消。   外面的颜色就没那么鲜艳了。   还需要进一步的实验来证明完全以微藻为基础的饮食从长远来看并不会对动物的健康有害,但研究表明,它们有可能喂养小鸡、母鸡、猪和奶牛。光生物反应器已经可以用来培育适合人类食用的微藻菌株,比如流行的保健食品螺旋藻。   与许多其他行业一样,畜牧业经济往往难以改变。   但是这些替代的食物系统现在是可以实现的,如果有依赖大豆的政府的支持,这项技术可以拯救数百万公顷的雨林,并为已经被砍伐的森林地区的恢复提供空间。随着各国面临的减排压力加剧,这种转变可能会变得越来越有吸引力。   它还可以腾出宝贵的土地和水资源来养活预计在未来80年将增长一半的人口。随着全球变暖,洪水、干旱和农作物歉收的极端模式预计会出现,像这样的光生物反应器可能会为数百万人避免饥荒。就像地球上存在的许多问题一样,解决之道就在那里。我们只需要实现它们。   本文由剑桥大学CSER食品安全研究助理兼首席研究员Asaf Tzachor撰写。…

欧洲航天局尝试用“光生物反应器”作为航天员的氧气和营养来源

光生物反应器”作为航天员的氧气和营养来源

 欧洲航天局尝试用“光生物反应器”作为航天员的氧气和营养来源   空客公司将一个光生物反应器(PBR)实验系统带到国际空间站。该反应器由斯图加特大学开发,由空客公司代表德国航空航天中心(DLR)建造,旨在将国际空间站上的“LSR”生命支持系统所提取的部分二氧化碳转化为氧气和营养物质,这将有助于在未来长期太空任务中节约宝贵的资源。 未来太空探索的任务是将航天员送上月球和火星。任务成功的一个决定性因素将是将资源消耗保持在最低限度。由于从地球运送新的供应品既困难又昂贵,因此尽可能最大程度地实现水、氧和食物的各自资源循环是至关重要的。目前,大多数废水已经在国际空间站上被重新处理成淡水。 自2018年10月以来,欧洲航天局(ESA)的生命支持系统(LSR)一直在国际空间站上。它由空客公司制造,以前被称为ACLS(高级闭环系统),它收集航天员呼出的二氧化碳,并通过电解将其转化为氧气。国际空间站实验“PBR LSR”是一项旨在将二氧化碳转化为氧气和生物质的技术演示。为了实现这一目标,PBR将与LSR以物理化学混合的方法连接,并运行长达180天,在此期间,系统的稳定性和藻类培养的性能将被记录和评估。  小球藻是一种富含蛋白质的光合产物,目前已被广泛应用于食品(补充剂)中。在未来,大约30%的航天员食物可以被这种藻类营养物所替代。 小球藻所需的二氧化碳大部分将由LSR提供。如果没有可用的二氧化碳,藻类也可以从飞船上携带的瓶子中获取。藻类每14天被加入营养液,同时被稀释以允许新的藻类有空间生长。一旦实验完成,将对培养出的藻类的性能和生命周期进行评估,并将几个样本送回地球进行基因分析。技术上重要的下一个发展阶段,将是加工收获的藻类来生产食品。小球藻作为一种蛋白质来源,已经被广泛应用于食品中。 在“PBR LSR”中使用的混合方法,不仅有利于长期的太空任务,还将在更广泛的意义上实现资源节约,促进地球上可持续发展的实践。…

告别“靠天吃饭”,微藻异养培养大显身手

微藻异养培养设备

  告别“靠天吃饭”,微藻异养培养大显身手   在进入今天的主题前,首先向大家明确几个基本概念。我们知道,能源和碳源作为一切生物生长的基础,所谓的“光合自养”“光能异养”“化能自养”和“化能异养”型生物,它们的差异也主要体现在这几个方面。   “光合自养”型生物中的能源和碳源来源分别为光和二氧化碳,与其不同的是,“光合异养”型生物中只以有机化合物而非二氧化碳作为它们的碳源。“化能自养”型生物中的能量来源是通过无机或有机化合物的氧化作用,其碳源是二氧化碳,而“化能异养”型生物生长所需的能源和碳源均为有机化合物(如葡萄糖)。   “靠天吃饭”的光自养培养模式   微藻是单细胞生物,可以用作生产能源、食品、饲料的原料,在工业领域有着广阔的应用前景。   一直以来,藻类被认为像高等植物一样必须通过光合作用(利用光和二氧化碳)才能实现细胞生物质合成,即光自养培养模式。但这种培养模式基本只能“靠天吃饭”,受外界环境条件如温度、光强、日照时间等的限制,细胞浓度较低,一般只能达到0.5-1.5g/L。   图1开放式跑道池自养培养   此外,开放式光自养培养模式下的微藻易遭受浮游动物或细菌污染,正因如此,通过这种培养方式进行商业化生产的微藻品种极其有限,仅有耐强碱(pH9-10)螺旋藻、耐高盐(NaCl浓度高于30%)杜氏盐藻和能够快速增殖的小球藻。   图2自养培养下小球藻被浮游动物吞噬   异养模式虽好,但是也不是所有微藻都适用   实际上,很多微藻可不依赖于光和二氧化碳,它们可以在完全黑暗条件下利用有机物质进行异养生长。由于这种培养方式摆脱了对光的限制,微藻的生长速率比在光照条件下快得多,优势也是显而易见:   l微藻异养培养所需的能源及碳源均由有机碳源来提供,首先解决了能源限制问题;   l由于异养是在密闭的发酵罐中进行,整个培养系统采用蒸汽进行灭菌,从而解决了被其它微生物污染的问题;   l异养培养过程中的温度、pH、营养物的供应等都能得到较好的控制,细胞浓度可高达到100-200g/L。   然而,并非所有的微藻都能够进行异养生长。不能异养培养的最主要因素是,微藻自身不具备完善的吸收利用胞外有机碳和有机氮的机制。   具体来说,一是有些微藻因为有机物难以透过细胞膜进入细胞或者缺乏浓缩有机物的能力而不能被异养;二是有机物在细胞内进行代谢所需的酶系统不完善,有机物不能被有效利用,造成某些微藻难以异养;三是在异养条件下,某些微藻因呼吸作用所提供的能量不足以维持其生长而不能异养。   据统计,迄今为止被业界筛选出来适合异养方式培养的微藻有多个门类几十个藻种,其中小球藻、隐甲藻、裂壶藻、部分硅藻在异养培养方式研究中及量产化方面较为成熟。同时,也有研究采用代谢工程的方式,通过转基因来扩大微藻异养培养的品种及使用范围。例如,国外学者通过转入葡萄糖转运酶基因,使不能异养培养的三角褐指藻实现了利用葡萄糖进行异养生长。   在生化组成上,异养和自养培养所获得的微藻成分的区别主要在一些色素含量方面,例如光合自养所得的叶绿素和某些类胡萝卜素的含量会多些,但最重要的成分通常不会受到影响。研究表明,天然虾青素(一种高抗氧化活性类胡萝卜素)在微藻体内的生物合成也不一定需要光来诱导,完全可以通过施予某些胁迫因子来诱导产生。   微藻异养,更适合工业化生产   十多年的实践表明,微藻异养培养由于可控性强更适合工业化生产,与之相比,光合自养培养更像原始农业,可重复性差。然而,异养培养也存在建设成本大、运行成本高等缺点。目前,这种培养模式仅适用于高附加值产品的生产。例如,利用裂殖壶藻或隐甲藻来发酵生产DHA、利用蛋白核小球藻和裸藻异养发酵生产富含蛋白和β-1,3葡聚糖的食品等。   图3微藻发酵罐异养培养   受技术水平所限,当前微藻在异养培养条件下能够达到的生物量浓度仍然很低,制约了微藻的工业化应用。最近,中国科学院水生生物研究所的研究人员以一株可异养培养的富油栅藻为研究对象,通过有效的发酵过程优化,尤其是精准的葡萄糖浓度控制这一关键技术的突破,实现了该富油栅藻的超高密度培养,最高细胞浓度达到286g/L,比光自养培养提高了100-200倍,解决了微藻大规模工业化应用的问题。   图4异养高密度培养后培养液离心前后比较   微藻作为一种重要的资源,如何实现微藻的高细胞密度养殖已经成为微藻产业发展的关键问题。微藻异养培养能从根本上解决自养受光照影响的问题,已成为微藻培养的主要发展方向。   来源:中国科学院水生生物研究所…

光生物反应器培养微藻研究进展

       随着石油等不可再生能源的日益减少及低碳经济的迫切要求,生物能源已成各国的研发重点,但目前大多数的生物质能源是由作物制备的,与农业争地,与人类争粮,发展受到极大限制。微藻是一类具有叶绿素的单细胞生物,可自养、种类多、分布广、生长快,由于微藻在繁殖过程中可利用CO2,也可利用工业废水和生活污水中的废物,避免与农业争地,有利于实现有机废物处理与生物质生产的耦合。收获的微藻含有丰富的蛋白质、油脂、色素等多种生物质,是生产能源生物质、食品、饲(饵)料或医药产业的良好原料,且有可能成为化石燃料以及作物生物质的良好替代物,是实现能源可持续发展的有效途径。         为了达到上述目的,微藻生产的产业化是必然之路,但是由于尚缺乏切实可行、适宜投资的实施方案,作为微藻产业化链条中的关键环节,微藻的大规模培养成为微藻产业化中公认的难点和热点。目前,大规模培养微藻时所用的培养基大多是沼液、啤酒生产废水、养殖废水等有机废物,可以收获微藻作为生产饲料、色素、能源生物质等的原料;亟待解决的关键问题集中在减少病虫害污染、提高土地利用率和降低运行成本3个方面。常用的培养容器是光生物反应器,分为开放式和封闭式两大类,开放式光生物反应器构造简单、操作方便、运行成本低,是目前产业化培养中最常使用的生物反应器;封闭式光生物反应器则主要应用于实验室或小规模培养微藻,制造、运行及维护成本均高于前者,但能够较好地控制培养条件,具有更好的研究价值。         利用微藻处理废气、废水和生产有机生物质,光生物反应器是关键工序和重要的限制因素,研发低成本、高产量的微藻生物反应器势在必行。鉴于目前有关反应器研发不足,仍然存在诸多探讨空间,本文将就上述两大类微藻光生物反应器的特性进行回顾,比较其优劣,以期为相关研究提供借鉴。 1封闭式光生物反应器 封闭式光生物反应器内部和外界有一定的隔离措施,便于实现微藻的无菌培养,有平板式、柱状和管道式3种类型。 1. 1平板式光生物反应器         PBR是用透光性能较好的玻璃、树脂等材质制作而成的,结构相对简洁、易加工、易清洁、成本低、操作条件容易控制。比表面积是影响微藻光合作用的主要因素,因此制作过程中尽量增加反应器的比表面积,并根据需要设计不同的光径,另外为了获得最佳的入射光强度,户外放置的PBR通常要倾斜一定的角度。          齐祥明和崔海龙在多节隔板PBR的基础上增加了多级进气,建立了多级进气多级隔板式PBR(图1),有效提高了反应器的混合与传质性能,通过与普通反应器的液体平均速度、死区比、湍动能、湍动能耗散率、气含率、液相传质系数等参数的对比,发现多级进气多级隔板PBR各项指标均有很大提高。在通气率(每分钟通入反应器的气体体积与反应器实际装液体积之比)0.4~0. 8内,该反应器传质及混合性能表现优异。所以,他们提出以多级进气提高多节隔板反应器性能,并通过对比气含率、液体平均速度、湍动能、湍动能耗散率、死区、液相传质系数等性能评价参数得出多级进气多节隔板反应器通过特有的进气结构给出了更为优越的流动、混合性能,同时这种流动混合方面的优越性也明显提高了该新型反应器的传质性能,无疑将更加有利于微藻的培养。Alexandra等为了评估微藻培养对水资源恢复的潜力,从养分去除率和生物量生产2个方面评价了3台0. 55 m2; PBR(图2)的性能。PBR在室外(自然环境温度和光照强度)运行,使用来自ANMBR的富营养废水作为生长介质,该废水由预处理污水供给。太阳辐射是影响NRR的决定性因素。在光照强度203 000 lux、温度25. 5℃、培养时间8d条件产生最大生物量52. 3mg, NRR为5.84 mg NH4-N·L-1·d-1和0. 85mg PO43–P.L- 1.d-1。在上述条件下,当进水中的营养盐含量在40~ 50 mg N .L-1和6~7 mg p.L-1范围内时,可以达到出水营养盐标准(欧洲标准91 /271 /CEE)。温度和太阳辐射对PBR培养微藻有重要影响,太阳辐射强度是短期内影响NRR的关键因素。          PBR受到光照表面积大,藻液混合均匀,得到微藻生物量大;虽然其受制于制作材料的强度,放大困难,但可通过增加反应器单元实现;由于难以形成产业化规模化,限制了PBR的使用范围,但在小规模的实验室培养微藻中优势显著;操作简单、易控制,不易被杂菌污染、藻液收集方便,可以得到更高的生物量。 1. 2柱状光生物反应器         CBR由柱体、供气装置、控温装置、光源等组成。其中,柱体材料由透明玻璃或塑料制成;所供气体由底部进入,顶部排出;光源设置在柱体内部或外部(可使用太阳光),内置光源虽然效率高但不易清洗,应用受到限制。按进气模式分类有鼓泡式CBR(图3)和气升式CBR 2种,其中鼓泡式有同轴管式、分隔柱式、分离式和外循环式等类型[00;气升式反应器内部分成上升区和下降区2个部分,气体由上升区底部进入,因此底部培养液含气率大、密度小,气体就会自动上升到顶部,顶部的空间较大,气体逸散后从排气口排出,此时的培养液含气率降低、密度变大,气体就会从下降区流回至上升区底部而形成循环         郭祯等采用自制的鼓泡式CBR,通过批式及两段法培养湛江等鞭金藻(Isochrysis zhanjian-R-ensis sp. nov,一种产油模式藻种)。通过对微藻培养过程中pH、叶绿素荧光、微藻生物量及相关成分进行测定及分析,得到了此鼓泡柱式光生物反应器的培养条件范围,并实现了对以上指标的可控和微藻油脂的积累。张芬芬等采用50 L内置光源气升式反应器(图4),使用响应曲面确定了最佳培养条件,内置光源为红蓝光、光照强度约9 000 lux、光暗周期17. s h :6. s h,收获的小球藻的藻细胞密度为5. 48…

光合细菌培养用大规模管道式光生物反应器

光合细菌培养用光生物反应器,OD3.4

光语是一家光合细菌菌种和技术服务提供商,不单单为客户提供光合细菌培养用的光生物反应器,还可以为客户提供生产稳定,繁殖迅速的优质菌种和培养技术,保证客户买得起设备,培养光合细菌成功,不会出现设备买了养不起来光合细菌的情况,还可以为客户单位的技术工程师提供培训服务。…

饵料微藻和调水微藻大规模管道式光生物反应器培养方案

金藻光生物反应器

光语又是一家藻种和技术服务提供商,不单单为客户提供藻类培养用的光生物反应器,还可以为客户提供生产稳定,繁殖迅速的优质藻种和培养技术,保证客户买得起设备,养得起藻,不会出现设备买了养不起来藻的情况,还可以为客户单位的养藻技术工程师提供培训服务。…