膜式光生物反应器(MPBR):基于微藻养殖的污水处理技术

基于微藻养殖的污水处理技术

        说起利用污水和微藻共生资源化的理念,不得不聊起2012年TED大会的一个演讲,嘉宾是美国NASA的科学家Jonathan Trent博士。当时他担任NASA一个名为OMEGA(离岸微藻闭环养殖计划)项目的首席科学家。

基于微藻养殖的污水处理技术
基于微藻养殖的污水处理技术

  这些小到要在显微镜下才能看得清的水藻居然可以干出惊天动地的大事业:本可导致富营养化的“大反派”,给它合适的条件和空间,却可以变成捕捉二氧化碳,同时净化污水的“超级英雄”。更重要的是,生物转化过程产出的油脂可以加工成燃料,同时因其富含DHA、EPA等物质,可以开发出一系列健康食品或医药品。这让更多人看到污水处理和微藻生物质加工结合的光明前景。

  Trent博士的研究得到了NASA的背书,在某种程度上推动了微藻污水处理的研发力度。但最终,NASA并没有给OMEGA项目续约,Trent博士描绘的那幅整合了污水处理、可再生太阳能、风能、潮汐能、水产养殖和生物质能的恢弘画面至今也还无法实现。除了开放池藻塘,下面这种光生物反应器算是目前微藻污水处理的高级模样了。

  曾被誉为未来生物质超新星的微藻什么时候能够兑现潜力?这个问题现在仍很难回答。不过,借用Trent博士的话说:“正如爱迪生所说,我们发现了一万个行不通的办法。”只有继续埋首研究,不断试错,才有新的发现。

  近年MBR膜生物反应器的发展也衍生出膜式光生物反应器(英文Membrane Photobioreactor,简称MPBR)。有研究报道MPBR不仅可以生产高浓度的生物质,而且脱氮除磷的效果也很显著。主要原因是MPBR可以分开控制HRT和SRT。但膜技术也增加了运行和维护的复杂度。澳大利亚新南威尔士大学的科学家最近就对MPBR的运行参数和表现进行评估。这次研究使他们对关键参数的测量和解读有了新的认识,其在IWA国际水协会期刊《Water Research》上发表了相关的研究成果。

  生物质测定哪种方法好?

  对于MPBR的效率评估,研究团队对五大方面进行了考察,包括生物质浓度、组成、产率、营养吸收率和采收潜力。生物质浓度是MPBR的关键表现参数。细胞计数和称重法是两大测定方法,后者其实就是测MLSS或者MLVSS。此前关于MPBR的研究大多采用称重法,因为这方法常用于MBR;而细胞计数本来就是传统藻类反应器生物质的测定方法。澳大利亚团队这次研究的一大目的就是对比这两种测定方法的优劣。

  流式细胞仪的检测发现,非藻类物质会在反应器里积聚,因此称重法不足以精确量化生物质浓度。研究团队提出细胞计数/MLSS的比值作为指示参数能更好地反映异养生物质浓度。

基于微藻养殖的污水处理技术
基于微藻养殖的污水处理技术

 基于合成废水的MPBR系统流程图

  通过上述检测,研究团队发现除了细胞计数/MLSS比例,细胞活性、细菌比例等表现参数都给MPBR的运行提供了新的认知途径。

  微藻自发絮凝

  藻细胞分离、采收困难是限制微藻技术产业化应用的重要瓶颈。其中一个影响因素是自发絮凝(Auto flocculation)。自发絮凝可因为高pH诱导或者胞外聚合物(EPS)引起。自发絮凝程度越高,后续处理成本越低。研究团队首次提出用毛细吸水时间(CST)作为评估MPBR分离采收潜力的指示因子。

  除了CST,他们还对絮体尺寸和分形维数两个参数进行测定。如下图所示,左图的三个峰分别代表细菌、微藻和絮体的尺寸。在纯培养基里,C.vulgaris细胞主要以分散形式存在,而在MPBR里则形成絮体,而且絮体尺寸从22.9增至44.6mm,增长近一倍。这是自发絮凝引起的。MPBR发现的絮体大于此前PBR相关研究的尺寸(8-20mm),但远小于明矾和铁盐絮凝剂形成的微藻絮体(尺寸范围在500-900mm左右),也小于传统的活性污泥絮体(55-311 mm)。分析显示絮体大小和MPBR里的细菌数有很强的相关性(r=0.88)(参考图4)。研究人员由此推测,利用藻类-细菌的相互作用可以改善MPBR生物质的采收潜力。

  此外,CST的测定结果则显示MPBR生物质的脱水能力跟絮体体积关系不大,生物质浓度似乎是影响脱水性能的主要因素。

  SRT和HRT

  HRT和SRT是MPBR的关键运行参数,他们决定了营养负荷和反应器的处理能力,生物质的许多特性都跟它们有关。传统PBR的HRT需要超过5天以避免生物质的冲刷流失,但MPBR的HRT可以低于2天。这不仅有利于生物质产能(更高的营养负荷),还减低了投资成本。但之前研究显示HRT的降低不利于污水处理的效率,而关于MPBR的SRT研究显示相对较低的SRT(约10天)有助得到更高的生物质产率。

  如下图6a所示,研究团队的实验发现,HRT超过3天,和SRT超过30天都降低了生物质浓度,理想的HRT应该1天左右,而SRT在18-30天之间。不同组分的比例分布(图6b)结果跟图6a也是吻合的。

基于微藻养殖的污水处理技术
基于微藻养殖的污水处理技术

  MPBR在不同HRT和SRT下的特点:(a)细胞计数;(b)不同组分的平均比例

  总的来说,更低的HRT和SRT有利于微藻快速生长,活性更高,异养培养基更少;然而延长HRT和SRT可以提高氮磷去除率和采收潜力。该结果说明了运行人员要根据对微藻采收的要求以及污水处理的标准,来为MPBR工艺选择合适的运行条件(例如HRT和SRT)。

  小结

  总的而言,澳洲团队的这次研究对MPBR的表现做了一个系统性评估,并且对如何优化运行效率有了新的发现和认识,尤其是对不同的HRT和SRT的应用:如果要提高藻类细胞的生长速度,并降低对营养物的要求,可以采用更低的HRT和SRT;延长HRT和SRT会得到更多的细菌,从而获得更显著的自发絮凝效果,以及更高的氮磷去除率。这说明在日后的研究里,研究者要基于实际需求,在不同的HRT和SRT之间取得平衡。另一方面,他们发现的细胞计数/MLSS等新参数,也将帮助其他研究人员更好地评估其他MPBR系统的优劣。

  参考资料

  Assessment of membrane photobioreactor(MPBR)performance parameters and operating conditions,Yunlong Luo,Pierre Le-Clech,Rita K.Henderson,Water Research 138(2018)169-180,https://doi.org/10.1016/j.watres.2018.03.050

Related Posts

Read More

光语为您介绍——角毛藻

本文主要介绍了硅藻中常见的一类,角毛藻。角毛藻属于硅藻门,细胞呈扁椭圆形,壳面多为椭圆形,常借角毛形成链状或相互连接。它种类繁多、分布广泛,在我国近海是重要的浮游硅藻。 角毛藻生活在海水、半咸水及极少数淡水中,适宜 10℃至 39℃生长,25℃至 35℃最宜。其繁殖方式多样,包括形成复大孢子、休眠孢子和有性繁殖。 角毛藻是许多海洋动物的饵料生物,在海洋浮游生物中地位重要,但也可能在某些情况下危害水质或水生生物。常见种类如洛氏角毛藻、窄细角毛藻、牟氏角毛藻等。 中国科学院海洋研究所陈楠生课题组研究发现,胶州湾角毛藻多样性可能被严重低估。在南美白对虾养殖中,角毛藻曾作虾苗开口料,但有自身弱点,海链藻可作为替代。总之,角毛藻对海洋生态重要,深入研究其特性和生态作用,利于了解海洋生态平衡,实际应用中要合理利用,避免负面影响。…

Read More

尾水处理(四)——菌藻共生系统处理尾水的基本原理

本文主要论述了菌藻共生系统在尾水处理方面的原理、应用、优点、挑战及前景。菌藻共生是细菌和藻类相互协作的复杂生态体系,尾水中的有机污染物被细菌分解为铵盐、磷酸盐和二氧化碳等,藻类通过光合作用将二氧化碳转化为有机物并释放氧气,二者协同实现污染物去除和水质净化。该系统除能去除有机物和营养物质,还能促进悬浮颗粒絮凝沉淀、吸附重金属。实际应用中,构建和运行需考虑光照、温度、pH 值等多种因素,且在处理不同尾水时具有适应性和灵活性。但也面临筛选培养高效菌藻组合、确保系统稳定运行及藻类收获处理等挑战。尽管如此,菌藻共生系统作为潜力技术为水资源问题提供新思路,随着研究和技术完善,有望在未来发挥更重要作用,创造更清洁可持续的生态环境。…

Read More

尾水处理(三)——菌藻共生系统在日常生活尾水中的应用

本文探讨了菌藻共生系统在日常生活尾水处理中的应用。日常生活污水含有有机物、氮、磷等多种污染物,传统处理方法有能耗高、易二次污染等问题,菌藻共生系统提供了更环保可持续的方案。菌藻相互依存,藻类光合作用为细菌提供氧气并吸收氮磷,细菌分解有机物,部分还能转化氮。该系统具诸多优势,如生态友好、能耗低、成本低,产生的藻类生物质有经济价值。实际应用形式多样,如生物膜反应器和开放式池塘,但要控制光照等关键因素以保稳定运行和良好效果。尽管面临藻类和细菌生长受季节和水质影响、藻类生物质回收利用技术不完善等挑战,其应用前景仍广阔。未来随着研究和技术创新,这一系统有望在污水处理领域发挥更重要作用,实现污水净化与资源回收利用,助力可持续发展和美丽家园建设。…

Write a comment