有效对抗自由基 小微藻能帮大忙

据了解,雨生红球藻因富含虾青素成为微藻领域的研究,,虾青素则能够清除自由基、抑制体内氧化侵害,与会专家一致认可这将有利于发展健康事业。那么自由基究竟对健康产生哪些影响呢?

1956年,英国的哈曼博士率先提出自由基与机体衰老和疾病有关,当时这一理论并不被人重视。1969年美国人McCord和Fridovich发现了超氧化物歧化酶(SOD),证实活性氧自由基存在于生物体内。1998年美国人菲希戈特、穆拉德、伊格纳罗三个人因发现氮氧自由基一起获得诺贝尔奖,使人们确认了各种不同自由基对机体的伤害。

迄今历经数十年研究,科学已经证实自由基对人体的多方面侵害。而自由基的来源分为外源性自由基,主要包括吸烟、酗酒、辐射、紫外线、电磁波、日光暴晒,或癌症患者接受放射线治疗,以及环境污染和化学药物滥用等;内源性自由基主要来源于人体自身的新陈代谢过程,另外个体精神状况差、压力过大、急躁、焦虑、郁闷、紧张等情绪问题也会产生自由基。

现代都市人,生活压力大,居住环境不佳,充满各种污染,体内自由基泛滥如不加以控制,每天都会受到数十亿个自由基的攻击。在本次论坛中,国际食品科学院院士、深圳大学高等研究院院长陈峰教授发表报告指出,由于身体不断产生氧自由基(ROS),过多的ROS会破坏细胞内平衡,并破坏各种细胞大分子例如脂质、DNA和蛋白质,导致身体各种器官细胞都被不同程度的损伤,最终导致衰老并诱发各种疾病。

在长期进化过程中,生命有机体内会产生一些物质能清除自由基,它们统称自由基清除剂。然而,随着年龄的增大,特别是急剧变化的生存环境和社会环境,使得大多数人群的机体内产生自由基清除剂的能力逐渐下降,导致体内清除剂的含量减少、活性也逐渐降低,从而削弱了对自由基损害的防御能力,加速了生命的衰老变化并引发一系列病变。为了防御自由基的损害,现代科学提供了向生命机体添加自由基清除剂,以达到抵抗疾病、延缓衰老等目的。

  对此陈峰教授表示,雨生红球藻虾青素作为“最强抗氧化剂”,能够显著抑制自由基对细胞的氧化侵害,其作用机理主要是提高体内过氧化氢酶CAT、超氧化物歧化酶SOD的活性,而这两者是机体抗氧化能力的重要标志。因此,为对抗自由基的过氧化反应,预防自由基引起的疾病,除了正常的均衡膳食外,补充以红球藻虾青素为代表的富含抗氧化成分的药物和营养补充食品是十分必要的。

Related Posts

Read More

增强乙酸补充下小球藻中二十碳五烯酸(EPA)与二十二碳六烯酸(DHA)的合成:化学诱变与适应性实验室进化联合策略

当前,从深海鱼类获取EPA和DHA这两种对心脑血管和大脑健康至关重要的Omega-3脂肪酸,面临着资源可持续性的压力。微藻,作为一种环境友好的替代资源,展现出巨大潜力,其中普通小球藻便是一个研究焦点。为了大幅提升小球藻合成EPA和DHA的能力,我们的研究团队成功运用了一套结合化学诱变与适应性进化的“强化训练”策略。我们首先使用一种名为甲基磺酸乙酯的化学诱变剂处理小球藻,并通过碘蒸气筛选法,成功找到了一株名为M41的“淀粉缺陷型”突变藻株。这株突变藻的特点是自身储存淀粉的能力变弱。随后,我们对M41进行了长期的“适应性实验室进化”培养,即在以乙酸为主要碳源的环境中不断传代,迫使它优化对乙酸的利用效率,从而更好地生长和积累目标产物。实验结果非常显著。在补充乙酸的培养条件下,M41突变株展现出惊人的生长和合成能力:其细胞密度比原来提高了93.75%,收获的藻粉干重也增加了33%;负责光合作用的叶绿素a、叶绿素b和类胡萝卜素含量均实现翻倍增长,意味着其生命活动更为活跃;最关键的突破在于,M41菌株生产的EPA和DHA含量与普通野生小球藻相比,分别飙升了485%和161%,实现了数倍的增长。…

Read More

乙酰丙酮缓解四环素对小球藻胁迫的作用:多重机制解析与生态安全性评估

本研究系统探讨了天然小分子乙酰丙酮(AA)在缓解四环素(TC)对小球藻(Chlorella vulgaris)胁迫过程中的作用机制及其生态安全性。研究发现,AA不仅显著提升了小球藻对四环素的去除能力,在培养基和水产废水中均实现了超过99%的高效去除,还明显逆转了TC对藻细胞生长的抑制作用,使其细胞密度恢复至接近正常水平。…

Read More

甲藻鉴定专业指导手册:从形态学到分子生物学

甲藻是水生生态系统中一类极其重要的单细胞真核生物,既是主要的初级生产者,也是赤潮的主要肇事者。准确鉴定甲藻物种是研究其生态功能、预警有害藻华及应对水产养殖灾害的基础。本手册系统阐述了甲藻鉴定的标准化流程、关键技术要点及常见误区,旨在提升鉴定工作的准确性与效率。…