有效对抗自由基 小微藻能帮大忙

据了解,雨生红球藻因富含虾青素成为微藻领域的研究,,虾青素则能够清除自由基、抑制体内氧化侵害,与会专家一致认可这将有利于发展健康事业。那么自由基究竟对健康产生哪些影响呢?

1956年,英国的哈曼博士率先提出自由基与机体衰老和疾病有关,当时这一理论并不被人重视。1969年美国人McCord和Fridovich发现了超氧化物歧化酶(SOD),证实活性氧自由基存在于生物体内。1998年美国人菲希戈特、穆拉德、伊格纳罗三个人因发现氮氧自由基一起获得诺贝尔奖,使人们确认了各种不同自由基对机体的伤害。

迄今历经数十年研究,科学已经证实自由基对人体的多方面侵害。而自由基的来源分为外源性自由基,主要包括吸烟、酗酒、辐射、紫外线、电磁波、日光暴晒,或癌症患者接受放射线治疗,以及环境污染和化学药物滥用等;内源性自由基主要来源于人体自身的新陈代谢过程,另外个体精神状况差、压力过大、急躁、焦虑、郁闷、紧张等情绪问题也会产生自由基。

现代都市人,生活压力大,居住环境不佳,充满各种污染,体内自由基泛滥如不加以控制,每天都会受到数十亿个自由基的攻击。在本次论坛中,国际食品科学院院士、深圳大学高等研究院院长陈峰教授发表报告指出,由于身体不断产生氧自由基(ROS),过多的ROS会破坏细胞内平衡,并破坏各种细胞大分子例如脂质、DNA和蛋白质,导致身体各种器官细胞都被不同程度的损伤,最终导致衰老并诱发各种疾病。

在长期进化过程中,生命有机体内会产生一些物质能清除自由基,它们统称自由基清除剂。然而,随着年龄的增大,特别是急剧变化的生存环境和社会环境,使得大多数人群的机体内产生自由基清除剂的能力逐渐下降,导致体内清除剂的含量减少、活性也逐渐降低,从而削弱了对自由基损害的防御能力,加速了生命的衰老变化并引发一系列病变。为了防御自由基的损害,现代科学提供了向生命机体添加自由基清除剂,以达到抵抗疾病、延缓衰老等目的。

  对此陈峰教授表示,雨生红球藻虾青素作为“最强抗氧化剂”,能够显著抑制自由基对细胞的氧化侵害,其作用机理主要是提高体内过氧化氢酶CAT、超氧化物歧化酶SOD的活性,而这两者是机体抗氧化能力的重要标志。因此,为对抗自由基的过氧化反应,预防自由基引起的疾病,除了正常的均衡膳食外,补充以红球藻虾青素为代表的富含抗氧化成分的药物和营养补充食品是十分必要的。

Related Posts

Read More

重复低剂量吲哚-3-乙酸刺激对微藻生物膜快速附着的遗留效应

为探究低剂量IAA对小球藻生物膜附着的影响,本研究将0.1mg/L IAA按1-8次频率添加,发现8次高频处理使生物膜附着量达9.2g/m²,较单次提升27%。转录组分析揭示其与疏水性氨基酸合成基因上调相关。该成果为微藻生物膜技术在碳封存、污水处理中的规模化应用提供技术支撑。…

Read More

嗜酸衣藻(Chlamydomonas sp. 1710)对铝胁迫的抗性机制:基于转录组学、蛋白质组学和生理学的研究

酸性矿山废水(AMD)含高浓度毒性铝离子,而嗜酸衣藻 (Chlamydomonas sp. 1710) 可在 1000 mg/L 铝环境中繁殖。本研究通过多组学及生理学分析,对比其与莱茵衣藻的铝胁迫响应,发现后者 30 mg/L 铝下生长完全受抑,而该藻 1000 mg/L 铝下仍保持 82% 生长率。其通过胞外屏障、主动清除、应激修复三重策略抗铝,为极端酸性环境生态修复提供理论支撑。…

Read More

一种用于推进衣藻叶绿体合成生物学研究的模块化高通量方法

叶绿体合成生物学在光合生物功能改良中潜力巨大,但受限于遗传工具匮乏与通量不足。本研究以莱茵衣藻为理想底盘,构建自动化平台,实现数千株叶绿体转化株系并行构建与筛选,表征 140 余种调控元件并建立标准化组装体系。通过引入合成光呼吸旁路,工程株生物量提升 3 倍,平台可向高等植物转移,为相关研究奠定基础。…