微藻生物能源油脂提取技术的新进展

微藻具有高生长速率、高油脂含量特点,被认为是最具潜力的油脂生物质资源之一。由于微藻生物柴油技术不成熟、生产成本过高,至今未获产业化突破。

近日,中国科学院青岛生物能源与过程研究所能源藻类资源团队刘天中研究员等针对微藻生物柴油生产成本和能耗影响大的微藻油脂提取、微藻生物柴油转化等下游关键技术进行了系列研究,结果发表在Bioresour. Technol.、Eur. J. Lipid Sci. Technol.、J. Biobased Mater. Bioenergy等期刊。

经絮凝、离心等方法收获所得的藻泥(algae slurry) 中含水量高达70%以上,传统的油脂提取需要预先对湿藻进行干燥制备藻粉,但湿藻仅干燥过程的能耗就超过微藻产出的能源。为降低提油能耗与成本,该团队开展了亚临界条件下高含水量藻泥的直接油脂提取研究,发现以绿色、无毒的乙醇作为溶剂,微藻油脂提取效率达到90.2%(J. Biobased Mater. Bioenergy, 2011, 5: 385)。随后,进一步开发了乙醇-己烷共溶剂提取技术,油脂提取效率达到90%,但溶剂用量大幅度降低,与以往提取方法相比,表现出较高的提取效率和较低的能耗(Eur. J. Lipid Sci. Technol., 2012, 114:205)。

该团队还研究了湿藻泥储存过程中微藻油脂成分的变化。发现藻细胞经冻融后,在短期储存期后,胞内的甘油三酯可转化生成游离脂肪酸,大大提高微藻油脂的酸价,严重影响后期的生物柴油转酯化过程。对此,该团队发展并优化了酸催化预酯化-碱催化转酯化的生物柴油转化工艺,转化效率接近100%,制备的生物柴油各项指标达到了生物柴油国家标准GB/T 20828-2007和欧盟生物柴油EN 14214标准(Bioresour. Technol., 2012, 111:208)。

上述系列研究已开展相关中试研究,对于解决微藻油脂提取、生物柴油转化等微藻生物柴油产业化的下游加工关键技术发展具有重要意义。

论文链接:

1. J. Biobased Mater. Bioenergy, 2011, 5: 385

2. Eur. J. Lipid Sci. Technol., 2012, 114:205

 

3. Bioresour. Technol., 2012, 111:208

142726183
青岛能源所在微藻生物能源研究中取得进展

Related Posts

Read More

 微藻是土壤重金属污染的“绿色克星”与小麦生长的秘密盟友

微藻作为土壤重金属污染的“绿色克星”与小麦生长的秘密盟友,正逐渐成为农业可持续发展的重要力量。在“镉大米”等新闻引发公众对食品安全和土壤污染问题的广泛关注后,科学家们将目光投向了微藻这一古老而微小的生命体。微藻不仅能够有效吸附和钝化重金属,还能通过固氮、释放磷、分泌有机质等方式,为作物提供丰富的养分,从而提升土壤肥力和作物产量。…

Read More

 雨生红球藻非运动细胞萌发与休眠转换机制及氮素的调控作用   

 雨生红球藻非运动细胞萌发与休眠转换机制及氮素的调控作用   雨生红球藻作为天然虾青素的重要来源,因其合成的虾青素具有超强抗氧化活性而具有极高的经济价值。然而,其生长缓慢、培养周期长等问题制约了规模化生产。调控红色非运动细胞的萌发是提升培养效率的关键策略,但该过程的代谢适应机制尚未完全明确。本文基于现有研究,系统探讨雨生红球藻非运动细胞与运动细胞之间休眠-萌发转换的机制,重点剖析氮素在这一转换过程中的核心调控作用,旨在为雨生红球藻的高效培养及产业化应用提供理论参考。…

来自宝岛台湾的喜讯,开物生医施总团队实施的工厂废气养藻系统方案取得巨大成功,5天收一次都来不及,3天OD到21,每次清洗好几次,都是浓浓的藻。 Read More

小球藻培养基:大规模培养的关键与优化 —— 从实验室到产业化生产的核心要素

在小球藻的大规模培养过程中,培养基起着举足轻重的作用。培养基犹如小球藻生长的 “土壤”,为其提供了生长、繁殖和代谢所需的各种营养物质和适宜环境。合适的培养基配方不仅能够促进小球藻的快速生长,提高生物量和产量,还能对小球藻的细胞组成和代谢产物进行调控,满足不同应用领域的特定需求。例如,在食品和饲料行业,我们希望通过优化培养基,提高小球藻的蛋白质含量;而在生物能源领域,则需要诱导小球藻积累更多的油脂,用于生产生物柴油。…