通过去除雨生红球藻鞭毛实现能量再分配增强虾青素的积累

Bioresources and Bioprocessing (IF=4.3) 2024-8-2

华北理工大学生命科学学院 王巍杰课题组

雨生红球藻(Haematococcus pluvialis)虾青素的生物合成是由能量驱动的。然而,鞭毛介导的能量消耗运动过程对虾青素积累的影响尚未得到很好的研究。在这项研究中,我们结合光合参数,分析了在pH冲击下有或没有鞭毛的雨生红球藻的虾青素和NADPH含量的变化。结果表明,除了在pH冲击处理组中观察到鞭毛的丧失外,细胞形态没有显著变化。相比之下,在4、8和12小时,鞭毛去除组的虾青素含量分别比对照组高62.9%、62.8%和91.1%。同时,Y(II)的增加和Y(NO)的减少表明,缺乏鞭毛运动过程的雨生红球藻细胞可能会将更多的能量分配给虾青素的生物合成。NADPH分析证实了这一发现,该分析显示鞭毛去除细胞中的NADH水平较高。这些结果为缺乏运动的细胞通过能量再分配实现虾青素积累的潜在机制提供了初步见解。

原文链接:Enhancement of astaxanthin accumulation via energy reassignment by removing the flagella ofHaematococcus pluvialis

https://doi.org/10.1186/s40643-024-00789-x

Related Posts

Read More

微藻与硒的相互作用

硒对微藻而言是一种 "多功能营养素",最核心的作用是参与抗氧化酶的合成 —— 它是谷胱甘肽过氧化物酶(GPx)和硫氧还蛋白还原酶(TrxR)的关键组成成分,通过硒代半胱氨酸的形式 "嵌入" 这些酶中,帮助清除细胞内的活性氧(ROS),保护蛋白质、DNA 等生物大分子不受损伤。…

小球藻粉 Read More

小球藻破壁

想象一下,有一个微小的绿色“金矿”,它比头发丝还细百倍,却蕴藏着极其丰富的营养宝藏——蛋白质比牛肉还高,维生素种类堪比复合维生素片,还有珍贵的“生命活性物质”。这就是小球藻,一种神奇的淡水单细胞藻类。但想拿到这些宝藏可不容易,因为它外面包裹着一层异常坚韧的“盔甲”——细胞壁。小球藻破壁技术,就是科学家们找到的,打开这座微观营养金库的关键钥匙!…

光语蛋白核小球藻 Read More

 藻类的逆袭:科学如何驯服小球藻的顽固腥味?

在健康食品的浪潮中,一种单细胞绿藻以其惊人的营养密度引起了科学家和营养学家的关注——小球藻。这种直径仅3-8微米的微型生物,蛋白质含量高达干重的63%,含18种氨基酸和珍贵的DHA,被联合国粮农组织誉为“21世纪最理想食品”。然而当研究人员兴奋地将它加入食品时,一道无形的屏障出现了:浓重独特的藻腥味。这种挥之不去的味道如同一个顽固的卫士,将小球藻牢牢挡在主流食品市场之外。…