藻类 DNA 可以帮助盲人重见光明

眼睛的构造

眼睛是灵魂之窗,让我们能将世界上美好的景物都尽收眼底。拥有正常视力的人平常很少会意识到眼睛的重要性,但若今天你被宣告再也看不到了该怎么办?你能想像自己永远活在一片黑暗中的世界吗?

你可曾经想过,我们究竟是如何透过眼睛看见眼前一切事物的呢?

眼睛的构造其实是相当精细的。首先,光线会穿透角膜(cornea)进入眼睛,进到眼睛的光线量由虹膜(iris)所调控,并使瞳孔因应亮度收缩或放大。接着水晶体(lens)会聚焦光线到视网膜(retina)上。

眼睛的构造
眼睛的构造

而视网膜的构造分为 3 层,这 3 层结构处理视觉讯号的顺序,正好和入射光线的方向相反。光线射入眼底后,会先射到最内层的“感光细胞”──视椎(cones)细胞及视杆(rods)细胞,并把光讯号转为电讯号和化学讯号,传给中间层细胞进行处理,处理过的讯号再传给最外层的“神经节细胞”。

视网膜的构造
视网膜的构造

神经节细胞会把各种不同讯号转换为不同频率、不同振幅、不同持续时间的“电脉冲”讯号(electrical impulses),透过视神经(optic nerve)传进大脑,经过整合后,成为我们看到的影像。

 

可怕的眼睛疾病:色素性视网膜炎

色素性视网膜炎(Retinitis Pigmentosa)会对视网膜造成严重的损害,最后导致视力丧失。原因是视网膜内的视杆与视锥的数目锐减而导致。

色素性视网膜炎可能是由于基因上的缺陷所导致,大多数为双眼发病。早期的症状通常在年幼时开始出现,在较昏暗的光线下就会看不清楚。接着会进一步导致视力变模糊、视野窄化(如下图)或失去分辨颜色的能力。在更后期阶段,病患可能只能感受到强光的闪烁,最后这个疾病会杀死视杆细胞及视椎细胞上的光受体,造成永久性的失明。
但现在,科学家研究出新的疗法,可能为盲人带来真正的一道曙光。光遗传学(Optogenetics)协助研究者了解动物脑中的神经元如何对光产生反应,让科学家能更加掌握神经的活动。而这是史上第一次将这个技术利用在人类身上,将有机会帮助盲人再次重见光明。

RestroSense 这家公司利用韦恩州立大学(Wayne State University)的科学家 Zhuo-Hua Pan 所做出的研究,将藻类身上对光敏感的 DNA 植入病毒中,再将病毒注入病患的眼睛中央。目标是要让病毒能抵达视网膜最上层的细胞,也就是神经节细胞。一旦病毒开始制造光敏性的蛋白质,神经节细胞便会产生对光反应的讯号。

到目前为止,唯一成功让人类恢复视力的方式是称作 The Argus II 的人工视网膜系统。

 The Argus II
The Argus II

The Argus II 亦被视为仿生眼或移植的视网膜。它提供视网膜电流刺激,以诱发盲人对视觉的感受。这技术被使用在严重的色素性视网膜炎病患身上。与其修复受损的细胞,研究团队将目标放在靠近神经纤维层的神经节细胞。疗程可以使细胞产生具光敏性的蛋白质,并传送受到光刺激而产生的讯号到大脑。这个技术已在盲眼的老鼠身上得到证实,在治疗后盲眼老鼠也会像视力正常的老鼠一样避开强光。

科学家希望能生产至少 10 万个光敏感细胞,这些细胞能带来一定程度的视力提升。但事实上,在真正治疗前,科学家无法得知患者的视力能改善多少,而这项技术也有一定的限制。藻类细胞只对蓝色敏感,因此他们预测患者可能只能辨别黑白两色。

另外,藻类细胞对光的敏感度依然不及健康的视网膜,因此研究者认为患者在明亮的阳光下才能看得清楚。但若这项技术成功了,研究者便可以让患者配戴增强光强度的眼镜(light-magnifying goggles)来解决亮度不够的问题。

Related Posts

Read More

增强乙酸补充下小球藻中二十碳五烯酸(EPA)与二十二碳六烯酸(DHA)的合成:化学诱变与适应性实验室进化联合策略

当前,从深海鱼类获取EPA和DHA这两种对心脑血管和大脑健康至关重要的Omega-3脂肪酸,面临着资源可持续性的压力。微藻,作为一种环境友好的替代资源,展现出巨大潜力,其中普通小球藻便是一个研究焦点。为了大幅提升小球藻合成EPA和DHA的能力,我们的研究团队成功运用了一套结合化学诱变与适应性进化的“强化训练”策略。我们首先使用一种名为甲基磺酸乙酯的化学诱变剂处理小球藻,并通过碘蒸气筛选法,成功找到了一株名为M41的“淀粉缺陷型”突变藻株。这株突变藻的特点是自身储存淀粉的能力变弱。随后,我们对M41进行了长期的“适应性实验室进化”培养,即在以乙酸为主要碳源的环境中不断传代,迫使它优化对乙酸的利用效率,从而更好地生长和积累目标产物。实验结果非常显著。在补充乙酸的培养条件下,M41突变株展现出惊人的生长和合成能力:其细胞密度比原来提高了93.75%,收获的藻粉干重也增加了33%;负责光合作用的叶绿素a、叶绿素b和类胡萝卜素含量均实现翻倍增长,意味着其生命活动更为活跃;最关键的突破在于,M41菌株生产的EPA和DHA含量与普通野生小球藻相比,分别飙升了485%和161%,实现了数倍的增长。…

Read More

乙酰丙酮缓解四环素对小球藻胁迫的作用:多重机制解析与生态安全性评估

本研究系统探讨了天然小分子乙酰丙酮(AA)在缓解四环素(TC)对小球藻(Chlorella vulgaris)胁迫过程中的作用机制及其生态安全性。研究发现,AA不仅显著提升了小球藻对四环素的去除能力,在培养基和水产废水中均实现了超过99%的高效去除,还明显逆转了TC对藻细胞生长的抑制作用,使其细胞密度恢复至接近正常水平。…

Read More

甲藻鉴定专业指导手册:从形态学到分子生物学

甲藻是水生生态系统中一类极其重要的单细胞真核生物,既是主要的初级生产者,也是赤潮的主要肇事者。准确鉴定甲藻物种是研究其生态功能、预警有害藻华及应对水产养殖灾害的基础。本手册系统阐述了甲藻鉴定的标准化流程、关键技术要点及常见误区,旨在提升鉴定工作的准确性与效率。…