微藻在养殖水体中对溶氧、pH值的影响

出处:通威水产科技频道 作者: 中国水产养殖网 2014年06月04日

  微藻在养殖水体中起着增氧、净化水质及提供饵料生物等作用,维持一定藻生物量是取得良好养殖效益的前提。研究人员以实验室养殖过程中遇到的一例水体藻老化现象向广大养殖户揭示微藻在养殖水体中对溶氧、pH的影响,以提醒广大养殖户注意对水体中微藻的维护。

一、材料与方法

1.材料

本次研究以陆基1号、3号池为研究对象,各陆基池面积为30m2,养殖水位1.0m,其养殖基本信息如下:

注:1号陆基池水色由最初淡绿色转为暗黑色,表观判断1号陆基池藻老化。3号陆基池一直表现为淡绿色。

2.方法

从早晨8:30关闭微孔增氧开始每2小时对1号、3号陆基养殖池进行温度、溶氧、pH测量1次。所使用的仪器分别为雷磁JPB-607A便携式溶氧仪和雷磁PXSJ-216离子计。

二、结果

1.陆基1号池与3号池水温的变化

图1显示1号陆基养殖池与3号陆基养殖池水温变化,由于水温主要受外界环境影响,故两个养殖池水温变化趋势相同且数值接近。6月中旬水温日变化在3℃左右。

图1 1号、3号陆基池水体温度变化趋势

2.陆基1号池与3号池溶氧的变化

图2显示1号池、3号池溶氧变化。从图中可以看出两者溶氧变化趋势完全不同。1号养殖池从8:30关闭微孔增氧后2小时内溶氧迅速下降,在10:30至14:30期间保持平稳,14:30以后开始下降(尤其16:30以后)。3号池关闭微孔增氧2小时内出现小幅度的下降,从10:30到14:30溶氧迅速上升,之后与1号池便现出相同的变化趋势。18:30开启微孔增氧后1号池溶氧迅速上升至较稳定状态,3号池则一直保持稳定状态。

图2 1号、3号陆基池水体溶氧变化趋势

注:8:30关微孔增氧机,18:30开微孔增氧机。

3.陆基1号池与3号池pH的变化

图3显示1号池、3号池pH变化,水体pH变化与溶氧变化趋势相近。关闭微孔增氧后1号池pH呈下降趋势,开启微孔增氧后pH又呈上升趋势,3号养殖池pH从关闭微孔开始表现出先上升再下降的趋势。

图3 1号、3号陆基池水体pH变化趋势

三、小结

通过1号养殖池(藻老化)与3号养殖池(藻未老化)数据跟踪对比主要得出以下结论:

⑴ 藻老化,水体产氧效率低。

⑵ 藻老化,水体CO2积累。微藻利用太阳能进行光合作用,此过程利用CO2合成有机物,故藻老化直接导致藻类光合作用减弱,CO2利用率下降,从而导致CO2累积pH下降。

综上所述养殖水体中藻老化直接造成水体溶氧偏低、CO2累积,pH下降。从而直接或间接影响养殖动物与养殖环境,故良好藻相与藻生物量不仅可以提高池塘溶氧水平,减少机械增氧时间从而减少养殖成本,又可以为养殖动物生长创造良好环境从而增加养殖效益。

Related Posts

Read More

光语为您介绍——角毛藻

本文主要介绍了硅藻中常见的一类,角毛藻。角毛藻属于硅藻门,细胞呈扁椭圆形,壳面多为椭圆形,常借角毛形成链状或相互连接。它种类繁多、分布广泛,在我国近海是重要的浮游硅藻。 角毛藻生活在海水、半咸水及极少数淡水中,适宜 10℃至 39℃生长,25℃至 35℃最宜。其繁殖方式多样,包括形成复大孢子、休眠孢子和有性繁殖。 角毛藻是许多海洋动物的饵料生物,在海洋浮游生物中地位重要,但也可能在某些情况下危害水质或水生生物。常见种类如洛氏角毛藻、窄细角毛藻、牟氏角毛藻等。 中国科学院海洋研究所陈楠生课题组研究发现,胶州湾角毛藻多样性可能被严重低估。在南美白对虾养殖中,角毛藻曾作虾苗开口料,但有自身弱点,海链藻可作为替代。总之,角毛藻对海洋生态重要,深入研究其特性和生态作用,利于了解海洋生态平衡,实际应用中要合理利用,避免负面影响。…

Read More

尾水处理(四)——菌藻共生系统处理尾水的基本原理

本文主要论述了菌藻共生系统在尾水处理方面的原理、应用、优点、挑战及前景。菌藻共生是细菌和藻类相互协作的复杂生态体系,尾水中的有机污染物被细菌分解为铵盐、磷酸盐和二氧化碳等,藻类通过光合作用将二氧化碳转化为有机物并释放氧气,二者协同实现污染物去除和水质净化。该系统除能去除有机物和营养物质,还能促进悬浮颗粒絮凝沉淀、吸附重金属。实际应用中,构建和运行需考虑光照、温度、pH 值等多种因素,且在处理不同尾水时具有适应性和灵活性。但也面临筛选培养高效菌藻组合、确保系统稳定运行及藻类收获处理等挑战。尽管如此,菌藻共生系统作为潜力技术为水资源问题提供新思路,随着研究和技术完善,有望在未来发挥更重要作用,创造更清洁可持续的生态环境。…

Read More

尾水处理(三)——菌藻共生系统在日常生活尾水中的应用

本文探讨了菌藻共生系统在日常生活尾水处理中的应用。日常生活污水含有有机物、氮、磷等多种污染物,传统处理方法有能耗高、易二次污染等问题,菌藻共生系统提供了更环保可持续的方案。菌藻相互依存,藻类光合作用为细菌提供氧气并吸收氮磷,细菌分解有机物,部分还能转化氮。该系统具诸多优势,如生态友好、能耗低、成本低,产生的藻类生物质有经济价值。实际应用形式多样,如生物膜反应器和开放式池塘,但要控制光照等关键因素以保稳定运行和良好效果。尽管面临藻类和细菌生长受季节和水质影响、藻类生物质回收利用技术不完善等挑战,其应用前景仍广阔。未来随着研究和技术创新,这一系统有望在污水处理领域发挥更重要作用,实现污水净化与资源回收利用,助力可持续发展和美丽家园建设。…

Write a comment